首页 > 业界 > 关键词  > 麻省理工最新资讯  > 正文

麻省理工推出AI工具PhotoGuard 对抗生成式AI模型

2023-08-01 16:14 · 稿源:站长之家

站长之家(ChinaZ.com) 8月1日 消息:近年来,大型扩散模型,如 DALL-E 2 和 Stable Diffusion,因其生成高质量、逼真的图像以及执行各种图像合成和编辑任务的能力而受到认可。

人工智能 AI 数字人

但是,人们对用户友好的生成式 AI 模型的潜在滥用也越来越担忧,这些模型可能会导致不适当或有害的数字内容的创建。例如,恶意行为者可能利用公开分享的个人照片,通过使用现成的扩散模型,出于恶意目的对其进行编辑。

为了应对未经授权的图像操纵带来的日益严峻的挑战,麻省理工学院计算机科学与人工智能实验室(CSAIL)的研究人员推出了一种名为“PhotoGuard”的 AI 工具,旨在对抗 DALL-E 和 Midjourney 等先进的生成式 AI 模型。 在研究论文《提高恶意 AI 驱动的图像编辑的成本》中,研究人员声称,PhotoGuard 可以检测像素值中不可察觉的“扰动”(干扰或不规则),这些扰动肉眼无法看到,但计算机模型可以检测到。

“我们的工具旨在在上传到互联网之前‘加固’图像,确保抵抗 AI 驱动的操纵尝试,”麻省理工学院 CSAIL 博士生兼论文第一作者 Hadi Salman 对 VentureBeat 说。“在我们的概念验证论文中,我们重点关注使用目前最流行的 AI 模型类别进行图像修改。这种抵抗力是通过在要保护的图像的像素中加入微妙地制作、不可察觉的扰动来建立的。这些扰动旨在破坏试图操纵图像的 AI 模型的功能。”

据麻省理工学院 CSAIL 的研究人员介绍,该 AI 采用了两种不同的“攻击”方法来创建扰动:编码器和扩散。

“编码器”攻击侧重于 AI 模型中图像的潜在表示,使模型将图像视为随机,并使图像操纵几乎变得不可能。同样,“扩散”攻击是一种更复杂的方法,涉及确定目标图像并优化扰动,使生成的图像与目标更加相似。 Salman 解释说,其 AI 使用的关键机制是“对抗性扰动”。

“这种扰动是对图像像素进行不可察觉地修改,已被证明非常有效地操纵机器学习模型的行为,”他说。“PhotoGuard 使用这些扰动来操纵处理受保护图像的 AI 模型,使其产生不现实或无意义的编辑。”

麻省理工学院 CSAIL 的研究生团队和主要作者 —— 包括 Alaa Khaddaj、Guillaume Leclerc 和 Andrew Ilyas —— 也参与了该论文。

该研究还于 7 月在国际机器学习会议上展示,并得到了国家科学基金会、开放哲学和国防高级研究项目局等机构资助。

Salman 说,尽管 DALL-E 和 Midjourney 等 AI 驱动的生成式模型因其能够从简单的文本描述中创建逼真的图像而受到关注,但滥用的风险也越来越明显。这些模型使用户能够生成高度详细和逼真的图像,为无辜和恶意的应用开辟了可能性。

Salman 警告说,欺诈性的图像操纵不仅会影响市场趋势和公众情绪,还会对个人图像构成风险。不恰当地修改的图片可能被用于敲诈勒索,从而在更大的范围内造成重大的财务影响。

举报

  • 相关推荐
  • 从SEO到GEO的范式革命,《生成式AI时代 品牌战略指南》白皮书正式发布

    11月4日,《生成式AI时代+品牌战略指南》白皮书发布,聚焦企业AI搜索优化需求。白皮书提出GEO全链路解决方案,结合E-E-A-T信任框架和3C指导法则,帮助企业破解AI搜索覆盖率低、合规风险高等痛点,推动从流量竞争转向价值竞争,构建可持续增长生态。

  • AI搜索可见性监控:品牌在生成式搜索时代的生存新法则

    AI搜索正颠覆传统SEO:58.5%的谷歌搜索已是零点击,用户看完AI摘要即离开。ChatGPT日处理超100亿查询,预计2030年流量将超谷歌。品牌需监控AI平台推荐情况,传统工具无法追踪豆包、通义千问等国产AI。建议建立监控体系:测试核心问题曝光率,每周追踪排名变化,持续优化内容。数据显示71%美国人用AI辅助购物决策,流量正加速从谷歌转向AI。生存法则很简单:看不见的,等于不存在。

  • 什么是AI生成式引擎优化GEO?GEO与传统SEO的核心区别

    ​GEO(生成式引擎优化)是AI时代的流量新密码。随着生成式AI全面渗透信息获取场景,传统搜索引擎优化(SEO)正在被GEO所补充甚至部分取代。截至2025年,中国AI搜索用户规模已超6.5亿,文心一言、豆包等平台日均处理查询超过20亿次,用户已经从“翻页搜索”转向“对话获取答案”。 与传统SEO关注网页排名不同,GEO的核心目标是让品牌内容被AI优先引用和推荐。研究表明,72%�

  • 免费 AI 可见度检测器工具推荐:监控你品牌在生成式搜索中的曝光

    AI搜索时代,58.5%的Google搜索已成"零点击",ChatGPT日查询超10亿次。品牌若未出现在AI工具推荐中,将错失新流量入口。文章提出GEO(生成引擎优化)概念,强调需监控品牌在豆包、DeepSeek等AI平台的曝光排名,并推荐AIBase工具实现数据可视化。建议企业建立监测基线,聚焦高价值问题优化内容,形成"监控-优化-验证"闭环,抢占AI推荐流量先机。

  • AI生成式引擎优化选择哪个平台好?GEO优化工具推荐

    在数字化浪潮席卷的当下,品牌如何在AI平台中脱颖而出,成为众多企业关注的焦点。要理解这一点,我们首先需要认识一个新兴的营销策略——GEO。 GEO,全称为生成式引擎优化(Generative Engine Optimization),其核心目标是让品牌内容能够被AI搜尋工具理解、引用和推荐,最终被纳入AI生成的答案中。这与传统的SEO(搜索引擎优化)专注于在搜索结果列表中排名靠前有着本质的不同�

  • 简知科技“简智AI大模型”通过国家生成式人工智能服务备案,助力兴趣教育迈向智能化新阶段

    广州简知科技自主研发的“简智AI大模型”通过国家生成式人工智能服务备案,标志着该模型在安全性、合规性与可靠性方面达到国家级标准。作为兴趣教育领域AI应用的重要里程碑,该模型围绕用户兴趣成长周期设计,提供个性化学习支持:可为未明确兴趣方向的用户智能推荐内容,为入门用户规划学习路径,为基础扎实用户提供进阶训练与智能反馈。其技术能力在旗下“简小知”等品牌中已实现“学—练—评—测”全流程覆盖,并通过社群互动增强学习动力。公司未来将持续优化模型能力,联合行业伙伴构建完整培养体系,推动兴趣教育向个性化、高质量方向发展。

  • geo生成式引擎优化是什么?GEO优化原理与工具推荐

    在AI技术日新月异的今天,我们的信息获取方式正经历着一场革命。生成式引擎优化(Generative Engine Optimization,简称GEO)是AI搜索时代应运而生的新型优化策略,它被视为传统SEO在AI时代的进化版。 与传统SEO专注于提升网页在搜索引擎结果中的排名不同,GEO的核心目标是让品牌信息能够被DeepSeek、豆包、文心一言等主流AI平台识别、引用并直接推荐给用户。这种转变是因为搜索�

  • GEO生成式引擎优化怎么做?GEO监控工具推荐

    文章探讨产品在AI问答中曝光不足的问题,指出传统SEO思维已过时,需转向生成式引擎优化(GEO)。GEO核心是让AI模型在回答时主动引用品牌,而非仅追求搜索排名。作者通过AIBase工具监控发现,产品描述过于技术化导致AI无法理解,调整文案后曝光翻倍。预测到2026年,传统搜索流量将降25%,AI问答成为主流入口,建议主动优化而非被动等待。

  • 生成式 AI 搜索优化(GEO)完全指南:从入门到落地

    随着生成式AI工具普及,用户更倾向直接提问而非传统搜索,导致优质内容可能被AI忽略。本文介绍生成式引擎优化(GEO)策略,帮助内容被AI理解、引用并整合进答案。核心包括:优化内容结构(如摘要、问答块、列表)、使用Schema标记、构建权威性,并推荐AIBase等工具监控引用效果。GEO是SEO的演进,需重塑写作方式以适应AI阅读逻辑。

  • 什么是GEO优化?AI生成式引擎优化平台推荐

    在数字化浪潮席卷的当下,搜索引擎的使用方式正在发生根本性变革。越来越多的用户不再只是输入碎片化的关键词,而是通过自然语言与AI对话来获取信息。根据中国信通院发布的《2025年生成式AI商业应用报告》数据显示,超60%的用户已养成借助AI对话获取各类信息的习惯。这一转变催生了全新的营销领域——GEO优化。 什么是GEO优化? GEO,全称为生成式引擎优化,是

今日大家都在搜的词: