首页 > 业界 > 关键词  > AI数据最新资讯  > 正文

AI公司用“AI合成数据”来训练AI大语言模型成趋势

2023-07-19 14:25 · 稿源:站长之家

站长之家(ChinaZ.com) 导语:AI 公司正试图通过“创造信息”来获得用于训练 AI 系统的大量数据,这被称为 "合成数据"。现在,AI 模型的发展已经达到了人类创造的数据的极限,因此需要新的方法来训练模型。

目前,训练 AI 模型的数据主要来自于互联网,用于训练这些系统的数据包括数字化的图书、新闻文章、博客、搜索查询、Twitter 和 Reddit 帖子、YouTube 视频和 Flickr 图像等内容。

人工智能 AI教育

但是随着生成式 AI 技术的发展,即使是资金充裕的 AI 公司也很难找到易获取且高质量的数据。合成数据的使用可以绕过这个问题,公司可以使用 AI 模型生成文本、代码等信息,并用于训练更先进的模型。

根据 Cohere 的首席执行官 Aidan Gomez 的说法,合成数据已经很多,只是没有被广泛传播。例如,为了训练一个模型进行高级数学,Cohere 可能会使用两个互相交流的 AI 模型,其中一个扮演数学导师,另一个扮演学生。Gomez 表示:“他们正在进行三角学的对话…… 这完全是合成的。这些只是模型想象出来的。然后人类观察这段对话,如果模型说错了内容,就进行修正。这是目前的现状。”

微软研究院的两项最新研究表明,合成数据可以用于训练比 OpenAI 的 GPT-4或 Google 的 PaLM-2等最先进的软件更小更简单的模型。其中一篇论文描述了 GPT-4生成的一组短篇故事的合成数据集,该数据集只包含一个典型四岁孩子可能理解的词语。这个数据集被称为 TinyStories,然后用于训练一个简单的 LLM,能够生成流利和符合语法的故事。

另一篇论文展示了可以使用合成的 Python 代码进行训练,这些代码以教科书和练习的形式存在,他们发现这些代码在编码任务上表现相对不错。

一些初创公司如 Scale AI 和 Gretel.ai 已经提供合成数据作为服务,这种数据可以保护个人隐私,同时保持统计数据的完整性。Gretel 由前美国国家安全局和中央情报局的情报分析师创立,与谷歌、汇丰银行、Riot Games 和 Illumina 等公司合作,通过合成数据的方式来增强他们现有的数据,以帮助训练更好的 AI 模型。

然而,使用低质量的合成数据可能会阻碍进展,并可能导致技术的退化。随着 AI 生成的文本和图像开始充斥互联网,AI 公司在搜索训练数据时不可避免地会使用其自身早期版本生成的原始数据,这种现象被称为 “dog-fooding”。一项来自牛津和剑桥等大学的研究最近警告称,训练模型时使用自身的原始输出(可能包含虚假或捏造的信息)可能会逐渐损害和降低技术的质量,造成 “不可逆的缺陷”。尽管存在这些风险,AI 研究人员认为合成数据有助于加速超级智能 AI 系统的发展。

举报

  • 相关推荐
  • 秒懂生成式AI大语言模型是如何生成内容的?

    备受关注的大语言模型,核心是自然语言的理解与文本内容的生成,对于此,你是否好奇过它们究竟是如何理解自然语言并生成内容的,其工作原理又是什么呢?要想了解这个,我们就不得不先跳出大语言模型的领域,来到机器翻译这里。传统的机器翻译方式是采用RNN循环神经网络。以上就是大语言模型的工作原理了,强大Transformer的实用性还不止于在自然语言处理领域,包括�

  • AI研究人员发现了主要大语言模型中关键漏洞 可低成本复制

    大型语言模型如ChatGPT和Bard在全球范围内引起了广泛的关注,众多公司投资数百万美元用于开发这些人工智能工具一些领先的AI聊天机器人的估值已达到了数十亿美元。这些LLM主要被应用于AI聊天机器人,它们通过整合互联网上的大量信息来学习和为用户提供请求的答案,这些请求通常被称为“提示”。”这项研究为我们提醒了虽然AI技术带来了巨大的机会,但也伴随着一系列潜在的威胁,因此必须谨慎行事。

  • 「深呼吸」让大模型表现更佳!谷歌DeepMind利用大语言模型生成Prompt,还是AI更懂AI

    【新智元导读】谷歌DeepMind提出了一个全新的优化框架OPRO,仅通过自然语言描述就可指导大语言模型逐步改进解决方案,实现各类优化任务。「深呼吸,一步一步地解决这个问题。这项研究首次提出并验证了使用大语言模型进行优化的有效性,为利用LLM进行更广泛优化任务提供了框架和经验,是这个新的研究方向的开拓性工作,具有重要意义。

  • 使用AI语言模型有助于诊断精神分裂症

    伦敦大学学院神经学院的科学家开发了一些新的工具,这些工具基于AI语言模型,可以特征化被诊断患有精神分裂症的患者语音中的细微特征。这项发表在《美国国家科学院院刊》上的研究,旨在了解自动语言分析如何帮助医生和科学家诊断和评估精神疾病。如果这些工具被证明是安全和可靠的,他预计它们会在未来十年开始应用于临床。

  • 丰田训练AI机器人制作早餐,无需编码、通过触觉学习

    丰田研究院近日宣布,他们成功使用生成式人工智能在“机器人幼儿园”中培训机器人执行各种灵巧任务无需进行繁琐的编码工作。这一突破性的技术使得机器人可以通过触觉感知和学习,像人类一样执行各种任务。与丰田研究人员的方法类似,他们的机器人利用他们所获得的经验来推断如何做事。

  • Hugging Face 大语言模型三大优化技术

    大语言模型的生产部署面临着两个主要挑战:一是需要庞大的参数量,二是需要处理超长的上下文信息输入序列。HuggingFace基于他们在提供大型模型服务方面的经验,分享了一些应对这些难题的技术。文章深入剖析了大语言模型优化的关键技术点,对于产业实践具有重要参考价值。

  • 英伟达与 Anyscale 作:提高大型语言模型和生成式 AI 应用的开发效率

    用于生成式AI工具的大型语言模型通常会极大地增加对更多处理器的需求,这些处理器通常价格昂贵且供应受限。即使是云资源也不能总是解决企业试图扩展规模并利用最新的生成式AI技术所面临的问题。」Anyscale首席执行官兼联合创始人RobertNishihara在一份声明中表示。

  • OpenLM:一个专为中等规模语言模型设计的模型训练

    OpenLM是一个旨在训练中等规模语言模型的PyTorch代码库,它强调了最大化GPU利用率和训练速度的设计。该库已经通过训练OpenLM-1B和OpenLM-7B两个语言模型,分别在1.6T和1.25T的文本标记上进行验证,取得了令人瞩目的成果。OpenLM的团队成员和致谢也在文章中列出,表明了该项目的合作性质和开源精神。

  • Headless语言模型:通过捆绑嵌入提高模型训练速度

    研究人员发现了一种改进语言模型性能的方法——Headless语言模型,即将输入嵌入与模型的其他嵌入捆绑在一起,并使用对比损失。通常情况下,语言模型的输入和输出嵌入层是分开的,但这种新方法通过捆绑它们,提高了模型的训练速度和准确性。这项工作为以对比学习取代交叉熵作为自监督预训练目标开辟了道路,为语言表示学习提供了一种高效可行的替代方案。

  • 开源机器学习库vLLM 提升大语言模型推理速度

    大语言模型在改变人们的生活和职业方面影响越来越大,因为它们实现了编程助手和通用聊天机器人等新应用。这些应用的运行需要大量硬件加速器如GPU,操作成本非常高。更大的模型、更复杂的解码算法和更长的序列会导致更明显的改进。