首页 > 业界 > 关键词  > 生成式AI最新资讯  > 正文

Gartner发布2024年十大战略技术趋势:包括全民化的生成式AI

2023-10-18 11:44 · 稿源:站长之家

站长之家(ChinaZ.com)10月18日 消息:日前,Gartner 公布了2024年需要探索的10大战略技术趋势列表。Gartner杰出研究副总裁兼研究团队负责人Chris Howard表示:“IT领导者和其他高管必须评估战略技术趋势的影响与益处,但由于技术创新的速度日益加快,这并非易事。例如生成式AI和其他类型的AI虽然带来了新的机遇并推动了若干趋势的发展,但要想通过长期使用AI获得业务价值,还需要采取严谨的方法广泛采用AI并注意风险。”

机器人,AI

2024年最重要的战略技术趋势包括:

全民化的生成式AI(Democratized Generative AI)

经过大规模预训练的模型、云计算与开源的融合正在推动生成式人工智能(生成式AI)的全民化,使这些模型能够被全球工作者所用。到2026年,Gartner预测超过80%的企业将使用生成式AI的API或模型,或在生产环境中部署支持生成式AI的应用,而在2023年初这一比例不到5%。

生成式AI应用可以让企业用户访问并使用大量内部和外部信息源,这意味着生成式AI的快速采用将极大地促进企业知识和技能的全民化。大型语言模型使企业能够通过丰富的语义理解,以对话的形式将员工与知识相连接。

AI信任、风险和安全管理(AI Trust, Risk and Security Management)

AI的全民化使得对AI信任、风险和安全管理(TRiSM)的需求变得更加迫切和明确。在没有护栏的情况下,AI模型可能会迅速产生脱离控制的多重负面效应,抵消AI所带来的一切正面绩效和社会收益。AI TRiSM提供用于模型运维(ModelOps)、主动数据保护、AI特定安全、模型监控(包括对数据漂移、模型漂移和/或意外结果的监控)以及第三方模型和应用输入与输出风险控制的工具。

Gartner预测,到2026年,采用AI TRiSM控制措施的企业将通过筛除多达80%的错误和非法信息来提高决策的准确性。

AI增强开发(AI-Augmented Development)

AI增强开发指使用生成式AI、机器学习等AI技术协助软件工程师进行应用设计、编码和测试。AI辅助软件工程提高了开发人员的生产力,使开发团队能够满足业务运营对软件日益增长的需求。这些融入了AI的开发工具能够减少软件工程师编写代码的时间,使他们有更多的时间开展更具战略意义的活动,比如设计和组合具有吸引力的业务应用等。

智能应用(Intelligent Applications)

Gartner将智能应用中的“智能”定义为自主做出适当响应的习得性适应能力。在许多用例中,这种智能被用于更好地增强工作或提高工作的自动化程度。作为一种基础能力,应用中的智能包含各种基于AI的服务,如机器学习、向量存储和连接数据等。因此,智能应用能够提供不断适应用户的体验。

目前已存在对智能应用的明确需求。在2023年Gartner首席执行官(CEO)和业务高管调查中,26%的CEO认为对企业机构破坏力最大的风险是人才短缺。吸引和留住人才是CEO在人力资源方面的首要任务,而AI被认为是未来三年对他们所在行业影响最大的技术。

增强型互联员工队伍(Augmented-Connected Workforce)

增强型互联员工队伍(ACWF)是一种优化员工价值的战略。加速并扩大人才规模的需求推动了ACWF 的发展趋势。ACWF使用智能应用和员工队伍分析提供助力员工队伍体验、福祉和自身技能发展的日常环境与指导。同时,ACWF还能为关键的利益相关方带来业务成果和积极影响。

到2027年底,25%的首席信息官(CIO)将使用增强型互联员工队伍计划将关键岗位的胜任时间缩短50%。

持续威胁暴露管理(Continuous Threat Exposure Management)

持续威胁暴露管理(CTEM)是一种使企业机构能够持续而统一地评估企业数字与物理资产可访问性、暴露情况和可利用性的务实系统性方法。根据威胁载体或业务项目(而非基础设施组件)调整CTEM评估和修复范围不仅能发现漏洞,还能发现无法修补的威胁。

Gartner 预测,到2026年,根据 CTEM 计划确定安全投资优先级别的企业机构将减少三分之二的漏洞。

机器客户(Machine Customers)

机器客户(也被称为“客户机器人”)是一种可以自主协商并购买商品和服务以换取报酬的非人类经济行为体。到2028年,将有150亿台联网产品具备成为客户的潜力,这一数字还将在之后的几年增加数十亿。到2030年,该增长趋势将带来数万亿美元的收入,其重要性最终将超过数字商务的出现。在战略上应考虑为这些算法和设备提供便利乃至创造新型客户机器人的机会等。

可持续技术(Sustainable Technology)

可持续技术是一个数字解决方案框架,其用途是实现能够支持长期生态平衡与人权的环境、社会和治理(ESG)成果。AI、加密货币、物联网、云计算等技术的使用正在引发人们对相关能源消耗与环境影响的关注。因此,提高使用IT时的效率、循环性与可持续性变得更加重要。事实上,Gartner 预测,到2027年,25% CIO的个人薪酬将与他们对可持续技术的影响挂钩。

平台工程(Platform Engineering)

平台工程是构建和运营自助式内部开发平台的一门学科。每个平台都是一个由专门的产品团队创建和维护并通过与工具和流程对接来支持用户需求的层。平台工程的目标是优化生产力和用户体验并加快业务价值的实现。

行业云平台(Industry Cloud Platforms)

Gartner 预测,到2027年,将有超过70%的企业使用行业云平台(ICP)加速其业务计划,而2023年的这一比例还不到15%。ICP通过可组合功能将底层 SaaS、PaaS 和 IaaS 服务整合成全套产品,推动与行业相关的业务成果。这些功能通常包括行业数据编织、打包业务功能库、组合工具和其他平台创新功能。ICP是专为特定行业量身定制的云方案,可进一步满足企业机构的需求。

举报

  • 相关推荐
  • AI搜索可见性监控:品牌在生成式搜索时代的生存新法则

    AI搜索正颠覆传统SEO:58.5%的谷歌搜索已是零点击,用户看完AI摘要即离开。ChatGPT日处理超100亿查询,预计2030年流量将超谷歌。品牌需监控AI平台推荐情况,传统工具无法追踪豆包、通义千问等国产AI。建议建立监控体系:测试核心问题曝光率,每周追踪排名变化,持续优化内容。数据显示71%美国人用AI辅助购物决策,流量正加速从谷歌转向AI。生存法则很简单:看不见的,等于不存在。

  • 什么是GEO优化?AI生成式引擎优化平台推荐

    在数字化浪潮席卷的当下,搜索引擎的使用方式正在发生根本性变革。越来越多的用户不再只是输入碎片化的关键词,而是通过自然语言与AI对话来获取信息。根据中国信通院发布的《2025年生成式AI商业应用报告》数据显示,超60%的用户已养成借助AI对话获取各类信息的习惯。这一转变催生了全新的营销领域——GEO优化。 什么是GEO优化? GEO,全称为生成式引擎优化,是

  • 什么是AI生成式引擎优化GEO?GEO与传统SEO的核心区别

    ​GEO(生成式引擎优化)是AI时代的流量新密码。随着生成式AI全面渗透信息获取场景,传统搜索引擎优化(SEO)正在被GEO所补充甚至部分取代。截至2025年,中国AI搜索用户规模已超6.5亿,文心一言、豆包等平台日均处理查询超过20亿次,用户已经从“翻页搜索”转向“对话获取答案”。 与传统SEO关注网页排名不同,GEO的核心目标是让品牌内容被AI优先引用和推荐。研究表明,72%�

  • 免费 AI 可见度检测器工具推荐:监控你品牌在生成式搜索中的曝光

    AI搜索时代,58.5%的Google搜索已成"零点击",ChatGPT日查询超10亿次。品牌若未出现在AI工具推荐中,将错失新流量入口。文章提出GEO(生成引擎优化)概念,强调需监控品牌在豆包、DeepSeek等AI平台的曝光排名,并推荐AIBase工具实现数据可视化。建议企业建立监测基线,聚焦高价值问题优化内容,形成"监控-优化-验证"闭环,抢占AI推荐流量先机。

  • AI生成式引擎优化选择哪个平台好?GEO优化工具推荐

    在数字化浪潮席卷的当下,品牌如何在AI平台中脱颖而出,成为众多企业关注的焦点。要理解这一点,我们首先需要认识一个新兴的营销策略——GEO。 GEO,全称为生成式引擎优化(Generative Engine Optimization),其核心目标是让品牌内容能够被AI搜尋工具理解、引用和推荐,最终被纳入AI生成的答案中。这与传统的SEO(搜索引擎优化)专注于在搜索结果列表中排名靠前有着本质的不同�

  • geo生成式引擎优化是什么?GEO优化原理与工具推荐

    在AI技术日新月异的今天,我们的信息获取方式正经历着一场革命。生成式引擎优化(Generative Engine Optimization,简称GEO)是AI搜索时代应运而生的新型优化策略,它被视为传统SEO在AI时代的进化版。 与传统SEO专注于提升网页在搜索引擎结果中的排名不同,GEO的核心目标是让品牌信息能够被DeepSeek、豆包、文心一言等主流AI平台识别、引用并直接推荐给用户。这种转变是因为搜索�

  • 革命来临:在生成式 AI 时代,SEO该怎么做

    生成式AI正重塑SEO规则:搜索入口从点击列表转向答案直呈,SEO核心从"优化排名"升级为"优化被引用"。需打造能被AI摘录的内容(如FAQ、结构化数据),强化语义结构与权威性,监控"被AI引用"新指标。推荐使用AIBase GEO等工具量化AI可见性,实现从流量获取到答案源头的战略转型。

  • GEO生成式引擎优化怎么做?GEO监控工具推荐

    文章探讨产品在AI问答中曝光不足的问题,指出传统SEO思维已过时,需转向生成式引擎优化(GEO)。GEO核心是让AI模型在回答时主动引用品牌,而非仅追求搜索排名。作者通过AIBase工具监控发现,产品描述过于技术化导致AI无法理解,调整文案后曝光翻倍。预测到2026年,传统搜索流量将降25%,AI问答成为主流入口,建议主动优化而非被动等待。

  • 生成式 AI 搜索优化(GEO)完全指南:从入门到落地

    随着生成式AI工具普及,用户更倾向直接提问而非传统搜索,导致优质内容可能被AI忽略。本文介绍生成式引擎优化(GEO)策略,帮助内容被AI理解、引用并整合进答案。核心包括:优化内容结构(如摘要、问答块、列表)、使用Schema标记、构建权威性,并推荐AIBase等工具监控引用效果。GEO是SEO的演进,需重塑写作方式以适应AI阅读逻辑。

  • GEO 品牌可见度免费查询指南:你的品牌在生成式搜索里被看见的几率多大?

    本文探讨生成式AI搜索时代品牌面临的新挑战。传统SEO策略在AI搜索中失效,用户不再点击链接,而是直接获取AI生成的答案。核心问题从"排名竞争"转为"被提及竞争"——超60%用户只关注AI推荐的前3个品牌。文章提出GEO(生成式引擎优化)概念,通过5个实用建议提升品牌在AI搜索中的可见度,包括优化AI可读内容、获取权威媒体报道等,并推荐免费检测工具帮助品牌把握AI搜索新机遇。

今日大家都在搜的词: