首页 > 传媒 > 关键词  > 人工智能最新资讯  > 正文

智能BI新突破,看思迈特新品背后的第二增长曲线!

2024-09-02 16:57 · 稿源: 站长之家用户

人工智能技术正以出人意料的速度和方式重塑我们的世界。即便是最前沿的科学家,也难以预测未来12个月内生成式AI将带来怎样的变革。

然而,随着通用大模型的热度逐渐消退,AI Agent(人工智能助理或智能体)正迅速崛起,成为下一个科技风口

在今年4月的世界人工智能大会上,斯坦福大学教授吴恩达发出了一项振聋发聩的号召——他敦促所有从业者将注意力转向AI Agent。他强调:“AI Agent工作流将在今年推动人工智能取得巨大进展,甚至可能超越下一代基础模型的发展。这是一个极为重要且令人振奋的趋势,我呼吁所有人工智能从业者高度关注。”

作为企业服务领域中与AI关联最紧密的行业之一,BI行业目前也在积极拥抱AIGC技术,探索将LLM(大语言模型)、AI Agent、RAG(检索增强生成)和知识库等先进技术融入企业服务中,旨在更好地满足B端企业的复杂需求。通过解决这些问题,企业不仅能提升服务质量,还能增强客户的付费意愿,为自身创造更大的商业价值。

在这个快速变化的时代,AI Agent无疑将成为驱动未来发展的核心引擎之一。

近日,思迈特软件发布了第三代AI应用产品——Smartbi AIChat(中文名“白泽”), 这款产品利用智能体AI Agent技术实现了产品能力的全面升级,并在分析方式上引领了行业变革。为此,「ToB行业头条」特别采访了思迈特软件创始人吴华夫先生。

“大模型对全球的影响堪比工业革命,这预示着新的产业变革。而从企业战略层面来看,智能BI将成为思迈特的第二增长曲线。”吴华夫透露,AI将彻底打开BI行业广阔的市场空间,帮助企业加速数智化转型,真正释放数据要素的价值,推动中国产业升级。

01.AI+BI颠覆行业,思迈特开启第二增长曲线

自从AI技术变革爆发以来,企业IT服务市场经历了深刻变革,特别是BI行业,已然成为AI的最 佳落地场景。从互联网大厂到数据分析类公司,从传统BI厂商到初创公司,众多玩家正在加入这一赛道,探索AI+BI融合下行业价值变现的金矿。

“当前BI行业已经来到了一个新的起跑线。如何为企业带来更高的业务价值,是下一步行业竞争的关键。”吴华夫称,思迈特将智能BI作为第二增长曲线,在保证准确性、安全性的基础上,通过多年的行业积累及AI 技术的结合,实现公司业务差异化优势。

作为国产BI行业的领跑者,思迈特是最早探索AI+BI融合的企业之一。早在2019年,Smartbi首度将AI与BI融合;2023年,Smartbi把之前申请了NLA专利更好地产品化,发布了Smartbi对话式分析大模型版本;近日,思迈特发布最 新自研的第三代AI应用产品——Smartbi AIChat,名为“白泽”—— 意为知晓万物。

通过产品演示我们可以看到,白泽在异常分析、归因及预测等高 级分析能力上有显著增强。当用户输入指令“查询2023年10月的销售合同总金额”,后续还可以要求“对比过去三年的同月数据”,并要求它挖“2023年合同金额下降的原因”,Smartbi AIChat就会根据过往历史数据和最 新市场信息,结合行业总体的发展情况,自动分析产品类型、销售渠道、客户类型、促销活动等维度,找出背后的深层原因,或者预测未来的合同金额,并根据数据反馈提出准确的建议。

而如此智能表现的背后,是思迈特将最前沿的AI技术(RAG+LLM+AI Agent架构)与Smartbi的BI能力(可视化分析、机器学习与数据模型等能力)的强强结合。

前者基于大模型,通过用户与人工智能代理的多轮对话互动,结合上下文语境,更好地理解用户的意图。后者基于思迈特特殊的数据模型、指标模型等能力,提升响应的速度和分析深度。

据了解,目前客户对于这一产品给出了非常积极的反馈,在企业落地后,BI应用的活跃度正在持续上升,用户获得了“超越常规分析之外的惊喜”。

而这,正是智能BI的巨大潜在价值。“在AIGC技术融合下,BI的市场普及率/渗透率,有望从目前不到10%攀升到70%、80%,甚至更高。”吴华夫大胆预测。

这一观点也得到了市场研究的认同。根据IDC最 新发布的《中国商业智能和分析软件市场跟踪报告,2023H2》显示,2023下半年,中国商业智能与分析软件市场规模为5.2亿美元,同比增长为3.7%。根据最 新一期五年预测,市场增速将在2025年恢复到高点。预计到2028年,中国商业智能软件市场规模将达到17.4亿美元,未来5年市场年复合增长率(CAGR)为13.7%。

02.Smartbi AIChat如何助力企业释放数据想象力?

技术日新月异,几乎没人能准确预言明天。但我们仍然可以从只言片语中,看到一些未来的“风向”。

最近,谷歌前CEO施密特在斯坦福的一场演讲中预测,明年(AI领域)上下文窗口扩展、代理和文本到操作的组合,将会对世界产生巨大的影响。

无独有偶,Smartbi AIChat的设计理念跟施密特的预测不谋而合。

从上述图表可以看出,白泽的整个智能体由规划器(Planner)、执行计划(Plan)、代码解释器(Code Interpreter)、Smartbi Plugins(插件)和记忆体(Memory)组成。

当用户提出问题时,白泽就像一个聪明的助手,首先会用规划器仔细理解问题的意思,然后制定出详细的行动计划,并将一个大任务分成几个小任务来逐一完成。同时,每个小任务都会用到一种特殊的工具来编写代码,这个工具会利用公司内外的各种知识和信息,比如一些智能的分析工具和示例,来生成Python代码。

接下来,系统会根据任务的不同,用两种方式来处理计算。一些计算会在Smartbi的指标模型中计算,而另一些则需要用到Python去做库外计算。这种分工合作的方式,可以让我们处理各种复杂的计算任务,比如综合不同数据源甚至外部知识一起分析,预测原因等。既能保证分析的准确性和深度,又能快速地回答复杂的问题。当所有的小任务都完成后,系统会把每个任务的结果汇总起来告诉白泽,白泽再把这些结果整理好反馈给用户。这样,用户就能得到一个全面而准确的答案。

值得注意的是,这一设计架构中有两个“独 家武器”,也是思迈特对比互联网大厂通用大模型,所具有的核心优势。

一是Smartbi AIChat封装了Smartbi的应用插件。

思迈特凭借过去十余年服务5000多家客户,积累了众多主流行业和典型业务场景应用模版。这些知识以指标模型为载体,将金融、政府、制造、医疗、零售、教育等多个行业的Know-how,沉淀并封装为插件。因此,中小型客户无需从零开始进行繁琐复杂的需求沟通,开场只需要选择符合自己需求的指标模型,再根据自身需要对指标模型进行删减和适配,就能上线系统,初次使用就可以到百分之八九十的准确度,在短时间内实现“定制化解决方案”的效果。

二是Smartbi AIChat采用了RAG检索增强技术。

在大模型落地企业服务场景之初,最令人头疼的是大模型幻觉问题。

比如,面对“9.11和9.9哪个更大”的简单问题,国内外主流大模型统一翻车,认为9.11比9.9大。专业人士不得不出来解释,这类对于普通人来说的常识性问题,对于大模型来说,却需要进一步明确场景——比如明确告知大模型两个数字都是浮点数(实数)。

再比如,面对“第 一个在月球上行走的人是谁?”的问题,大模型回复“Charles Lindbergh在1951年月球先驱任务中第 一个登上月球”。实际上,第 一个登上月球的人是Neil Armstrong。

如果是C端消费级场景,大家或许还能一笑置之。但在B端企业服务场景,你能想象在全体经营大会上数据出错的场景吗?

为了避免AI“一本正经胡说八道”,目前最常见的解决思路是收集高质量事实数据,结合专业的知识库/数据库,直接通过应用插件预置到大模型的提示中,多次迭代检索,允许整个生成过程不断收集知识,从而获得更加专业和准确的答案。

白泽采用的解决方式就是使用指标维度替代表和字段,将指标模型、客户私有化业务知识、业务规则、用户反馈等都加载到向量库中。然后通过全面RAG增强检索,将检索到的信息注入到 LLM 提示中,从而获得更准确专业的结果。

整个规划和执行的过程,都记录在记忆体中。随着企业使用频率越高,智能体还会根据记忆不断迭代优化,实现“越用越聪明”。

谷歌前CEO施密特上述演讲还提到,技术发展的未来趋势可能是“人均拥有一个程序员”。

“如果你可以从任意语言转换为任意数字命令,这在本质上就是这个场景中的 Python。想象一下,地球上的每个人都有自己的程序员,他们实际上做他们想做的事情,而不是那些不按要求工作的程序员。这里的程序员知道我在说什么。想象一个不傲慢的程序员实际上做了你想做的事,而你不必付出高昂的代价。而这些程序员的供应是无限的。”

这一想象与思迈特的目标一致。“工具其实是会限制人的想象力的。但我们希望通过白泽这样一个数据助理,我们能帮助企业充分的发挥数据价值,释放数据想象力,让企业可以利用数据分析去做创新。”

据吴华夫介绍,白泽的下一个版本将聚焦如何将AIGC赋能BI开发者,实现"一句话构建一套BI系统",预计将于今年年底启动内测。

“受限于供给侧能力不足,BI项目建设周期长、成本高,效果还不可控。我们的目标是通过AIGC实现一句话生成整套BI系统,真正低成本、有效率地帮助中小企业完成数智化转型。”吴华夫介绍称,白泽的产品愿景是让用户爱上与数据聊天,为企业带来“超越常规分析之外的惊喜”。

大模型对行业的重构才刚刚开始,企业还处于初级阶段。“某个企业的领先地位可能也就是一年半载,技术最终会趋同。要想持续领先,唯有依靠企业的创新力。”

我们有理由相信,以Smartbi为代表的一批具有创新实力与精神的企业,将不断推动AI技术在BI领域的应用,引领行业的全新发展,实现从“数据驱动”到“智能决策”的跃迁。

推广

特别声明:以上内容(如有图片或视频亦包括在内)均为站长传媒平台用户上传并发布,本平台仅提供信息存储服务,对本页面内容所引致的错误、不确或遗漏,概不负任何法律责任,相关信息仅供参考。站长之家将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。任何单位或个人认为本页面内容可能涉嫌侵犯其知识产权或存在不实内容时,可及时向站长之家提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明(点击查看反馈联系地址)。本网站在收到上述法律文件后,将会依法依规核实信息,沟通删除相关内容或断开相关链接。

  • 相关推荐
  • 大家在看
  • Graphite Reviewer:AI代码审查伴侣

    Graphite Reviewer是一个AI代码审查工具,它通过即时反馈帮助团队提高代码审查的效率和质量。该工具利用代码库感知AI,自动检测代码中的bug和错误,使团队能够专注于构建而不是审查。它支持自定义规则,保证代码质量和一致性,同时确保代码的私密性和安全性。Graphite Reviewer的主要优点包括快速合并PR、强化质量和一致性、保持代码私密和安全、捕捉常见错误等。

  • Character SDK:构建可实时互动的AI角色

    Character SDK是一个能够创建AI角色的平台,这些角色可以实时听、说、看,甚至采取行动。它通过实时语音和视觉识别、高级OCR处理、多语言交流、自适应推理和基于意图的任务自动化等技术,帮助企业提高效率,减少成本,并提供个性化的用户体验。

  • Temperstack:一站式SRE平台,提升服务可靠性。

    Temperstack是一个企业级的主动式SRE平台,旨在减少SRE的重复劳动,提高服务的可靠性。它通过自动化服务目录、警报审计和跨您的监控工具的SLI报告,为从CTO到SRE工程师的团队提供可见性、主动发现问题并促进协作。Temperstack集成了流行的监控工具,提供统一的命令界面,以实现全面的SRE可见性和行动。

  • o1-engineer:命令行工具,提升开发效率

    o1-engineer 是一个命令行工具,旨在帮助开发者通过 OpenAI 的 API 高效地管理和交互项目。它提供了代码生成、文件编辑、项目规划等功能,以简化开发工作流程。

  • Canvas:与ChatGPT协作的新方式

    Canvas是OpenAI推出的一个新界面,旨在通过与ChatGPT的协作来改进写作和编码项目。它允许用户在一个单独的窗口中与ChatGPT一起工作,超越了简单的聊天界面。Canvas利用GPT-4o模型,能够更好地理解用户的上下文,并提供内联反馈和建议。它支持直接编辑文本或代码,并提供快捷操作菜单,帮助用户调整写作长度、调试代码等。Canvas还支持版本回溯,帮助用户管理项目的不同版本。

  • Text Behind Image:轻松创建文字背景图片设计。

    Text Behind Image 是一个开源的设计工具,允许用户轻松创建文字背景图片设计。它提供了一个简洁的界面,让用户可以自由地在图片上添加文字,创造出独特的视觉效果。这个工具对于设计师、社交媒体运营者和内容创作者来说非常有用,因为它可以快速生成具有吸引力的视觉内容。

  • torchao:PyTorch原生量化和稀疏性训练与推理库

    torchao是PyTorch的一个库,专注于自定义数据类型和优化,支持量化和稀疏化权重、梯度、优化器和激活函数,用于推理和训练。它与torch.compile()和FSDP2兼容,能够为大多数PyTorch模型提供加速。torchao旨在通过量化感知训练(QAT)和后训练量化(PTQ)等技术,提高模型的推理速度和内存效率,同时尽量减小精度损失。

  • LFMs:新一代生成式AI模型

    Liquid Foundation Models (LFMs) 是一系列新型的生成式AI模型,它们在各种规模上都达到了最先进的性能,同时保持了更小的内存占用和更高效的推理效率。LFMs 利用动态系统理论、信号处理和数值线性代数的计算单元,可以处理包括视频、音频、文本、时间序列和信号在内的任何类型的序列数据。这些模型是通用的AI模型,旨在处理大规模的序列多模态数据,实现高级推理,并做出可靠的决策。

  • NVLM-D-72B:前沿的多模态大型语言模型

    NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。

  • gradio-bot:将Hugging Face Space或Gradio应用转化为Discord机器人

    gradio-bot是一个可以将Hugging Face Space或Gradio应用转化为Discord机器人的工具。它允许开发者通过简单的命令行操作,将现有的机器学习模型或应用快速部署到Discord平台上,实现自动化交互。这不仅提高了应用的可达性,还为开发者提供了一个与用户直接交互的新渠道。

  • AI-Powered Meeting Summarizer:会议语音转文本并自动生成摘要的AI工具

    AI-Powered Meeting Summarizer是一个基于Gradio的网站应用,能够将会议录音转换为文本,并使用whisper.cpp进行音频到文本的转换,以及Ollama服务器进行文本摘要。该工具非常适合快速提取会议中的关键点、决策和行动项目。

  • VARAG:视觉增强的检索与生成系统

    VARAG是一个支持多种检索技术的系统,优化了文本、图像和多模态文档检索的不同用例。它通过将文档页面作为图像嵌入,简化了传统的检索流程,并使用先进的视觉语言模型进行编码,提高了检索的准确性和效率。VARAG的主要优点在于它能够处理复杂的视觉和文本内容,为文档检索提供强大的支持。

  • JoyHallo:数字人模型,支持生成普通话视频

    JoyHallo是一个数字人模型,专为普通话视频生成而设计。它通过收集来自京东健康国际有限公司员工的29小时普通话视频,创建了jdh-Hallo数据集。该数据集覆盖了不同年龄和说话风格,包括对话和专业医疗话题。JoyHallo模型采用中国wav2vec2模型进行音频特征嵌入,并提出了一种半解耦结构来捕捉唇部、表情和姿态特征之间的相互关系,提高了信息利用效率,并加快了推理速度14.3%。此外,JoyHallo在生成英语视频方面也表现出色,展现了卓越的跨语言生成能力。

  • PhysGen:基于物理的图像到视频生成技术

    PhysGen是一个创新的图像到视频生成方法,它能够将单张图片和输入条件(例如,对图片中物体施加的力和扭矩)转换成现实、物理上合理且时间上连贯的视频。该技术通过将基于模型的物理模拟与数据驱动的视频生成过程相结合,实现了在图像空间中的动态模拟。PhysGen的主要优点包括生成的视频在物理和外观上都显得逼真,并且可以精确控制,通过定量比较和全面的用户研究,展示了其在现有数据驱动的图像到视频生成工作中的优越性。

  • Whisper large-v3-turbo:高效自动语音识别模型

    Whisper large-v3-turbo是OpenAI提出的一种先进的自动语音识别(ASR)和语音翻译模型。它在超过500万小时的标记数据上进行训练,能够在零样本设置中泛化到许多数据集和领域。该模型是Whisper large-v3的微调版本,解码层从32减少到4,以提高速度,但可能会略微降低质量。

  • Realtime API:低延迟的实时语音交互API

    Realtime API 是 OpenAI 推出的一款低延迟语音交互API,它允许开发者在应用程序中构建快速的语音到语音体验。该API支持自然语音到语音对话,并可处理中断,类似于ChatGPT的高级语音模式。它通过WebSocket连接,支持功能调用,使得语音助手能够响应用户请求,触发动作或引入新上下文。该API的推出,意味着开发者不再需要组合多个模型来构建语音体验,而是可以通过单一API调用实现自然对话体验。

  • Saylo AI:探索无限的AI角色扮演游戏。

    Saylo AI是一个AI角色扮演游戏,让你与AI角色互动,探索多样化的戏剧性故事。它利用人工智能技术,提供沉浸式的互动体验,让玩家在虚拟世界中与AI朋友交流,体验不同的故事情节。Saylo AI的背景信息展示了其创新性和娱乐性,旨在为玩家提供一种全新的娱乐方式。目前产品处于推广阶段,价格未明确标注。

  • twinny:Visual Studio Code的免费且私密的AI扩展

    twinny是一个为Visual Studio Code用户设计的AI扩展,旨在提供个性化的编程辅助,提高开发效率。它通过集成先进的AI技术,帮助开发者在编码过程中快速解决问题,优化代码,并提供智能提示。twinny的背景是响应开发者对于更加智能和自动化编程工具的需求,它通过简化开发流程,减少重复劳动,从而让开发者能够专注于更有创造性的工作。

  • Buildpad:构建人们真正想要的产品

    Buildpad 是一个旨在帮助创始人从概念到成功最小可行产品(MVP)的在线平台。它通过提供智能验证工具、AI引导的开发流程、进度跟踪以及个性化的项目见解,帮助用户构建能够获得市场认可的产品。Buildpad 的主要优点包括简化产品开发流程、提高产品成功率、以及提供个性化的指导和支持。

  • Novela:AI时代的技能学习平台

    Novela是一个专注于AI时代技能学习的在线平台,提供早期访问服务,用户可以免费试用。它旨在帮助用户掌握AI相关的技能,以适应未来职场的需求。

今日大家都在搜的词: