首页 > 关键词 > 谐振器最新资讯
谐振器

谐振器

在单个量子水平上控制机械运动的系统正在成为一个有前途的量子技术平台。新的实验工作现在确定了如何在不破坏量子态的情况下测量这种系统的量子特性--这是充分挖掘机械量子系统潜力的一个关键因素。当提到量子力学系统时,人们可能会想到单光子和隔离良好的离子和原子,或者电子在晶体中传播。在量子力学的背景下,更奇特的是真正的机械量子系统;也就是说,大质量物体的机械运动,如振动是量化的。图为声学共振器的光学显微镜图像(两个较大的圆盘,其内部是压电换能器)和连接到超导量子轨道(白色结构)的天线在一系列开创性的实验中,...

特别声明:本页面标签名称与页面内容,系网站系统为资讯内容分类自动生成,仅提供资讯内容索引使用,旨在方便用户索引相关资讯报道。如标签名称涉及商标信息,请访问商标品牌官方了解详情,请勿以本站标签页面内容为参考信息,本站与可能出现的商标名称信息不存在任何关联关系,对本页面内容所引致的错误、不确或遗漏,概不负任何法律责任。站长之家将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。任何单位或个人认为本页面内容可能涉嫌侵犯其知识产权或存在不实内容时,可及时向站长之家提出书面权利通知或不实情况说明,并提权属证明及详细侵权或不实情况证明(点击查看反馈联系地址)。本网站在收到上述反馈文件后,将会依法依规核实信息,第一时间沟通删除相关内容或断开相关链接。

与“谐振器”的相关热搜词:

相关“谐振器” 的资讯30篇

  • 科学家实现在不破坏量子态的情况下测量机械量子系统的属性

    在单个量子水平上控制机械运动的系统正在成为一个有前途的量子技术平台。新的实验工作现在确定了如何在不破坏量子态的情况下测量这种系统的量子特性--这是充分挖掘机械量子系统潜力的一个关键因素。当提到量子力学系统时,人们可能会想到单光子和隔离良好的离子和原子,或者电子在晶体中传播。在量子力学的背景下,更奇特的是真正的机械量子系统;也就是说,大质量物体的机械运动,如振动是量化的。图为声学共振器的光学显微镜图像(两个较大的圆盘,其内部是压电换能器)和连接到超导量子轨道(白色结构)的天线在一系列开创性的实验中,

  • 固态氖上的单电子方案为新型固态量子比特平台指明了新道路

    通过将氖气冷却到极低的固态,并将电子从灯泡灯丝喷射到固体上,便可在那里捕获一个电子...由于氖电子平台的结构相对简单,这项技术或有助于极大地压低制造成本...目前已知有许多种类型的量子比特可供挑选,而这支研究团队机智地选择了最简单的“单电子”方案 —— 玩具中的那种简单灯丝,便可轻易发出无限量的电子...研究配图 - 3:固体氖上单电子量子比特的光谱学和时域表征...需要指出的是,任何类型的量子比特(包括电子方案),都面临着极易被周围环境干扰的挑战...结果表明,固体氖为电子提供了一个具有极低电噪声干扰的相当稳健的环境......

  • 超导电路介导的远程磁振子相干耦合 有望推动量子计算设备的小型化

    从核磁共振成像(MRI)到计算机硬盘存储,磁性在我们的科技应用中发挥了许多关键的作用。不过在新兴的量子计算领域,磁相互作用也有望助推量子信息的传递。在 1 月 24 日发表于《物理评论快报》上的一篇文章中,研究人员介绍了美国能源部旗下阿贡国家实验室的一项新成果。研究配图 - 1:超导电路上的微波介导远距离磁振子耦合 据悉,科学家们已经实现了两个遥远的磁性设备之间的有效量子耦合,这些设备能够承载基于磁振子的激发。 当电流产生磁场时,就会有激发。而允许磁振子交换能量和信息的耦合,有望催生新颖的量子信息技术设备。 阿?

  • 日本理化学研究所实现更快在量子计算机中重设量子比特的技术

    模拟结果表明,有一种新的技术可以在不损害量子计算机的情况下重新设置"量子比特"。重启量子计算机是一个棘手的过程,可能会损坏其部件,但现在两位理化学研究所的物理学家提出了一种快速和可控的重启方式。传统的计算机处理存储为比特的信息,这些比特的值为0或1。量子计算机的潜在力量在于其处理"量子比特"的能力,这些比特可以同时取值为0或1,或者是两者的某种模糊混合。理化学研究所量子计算中心的量子物理学家Jaw Shen Tsai说:"然而,为了重复使用同一电路进行多次操作,你必须迫使量子比特快速回到零。但这说起来容易,做起来难。

  • 科学家创造合成维度 以更好地理解宇宙的基本规律

    人类在三维空间中体验世界,但日本的一项合作开发了一种创建合成维度的方法,以更好地理解宇宙的基本规律,并可能将其应用于先进技术。他们于1月28日在《科学进展》杂志上发表了他们的研究成果。论文作者、横滨国立大学电气和计算机工程系教授Toshihiko Baba说:“过去几年,维度的概念已经成为当代物理学和技术不同领域的一个核心固定因素。虽然对低维材料和结构的研究是富有成效的,但拓扑学的快速发展已经发现了更多潜在的有用现象,这些现象取决于系统的维度,甚至超越了我们周围世界的三个空间维度。” 拓扑学指的是几何学的延伸,它

  • 集成光子学与电子显微镜技术在非常规的合作中意外相遇

    透射电子显微镜(TEM)可以通过使用电子而不是光来对原子尺度的分子结构进行成像,并彻底改变了材料科学和结构生物学。在过去的十年中,人们对电子显微镜与光学激发的结合产生了浓厚的兴趣,例如,试图通过光来控制和操纵电子束。但是一个主要的挑战是传播的电子与光子的互动相当弱。在一项新的研究中,研究人员已经成功地证明了使用集成光子微谐振器进行极其有效的电子束调制。这项研究由EPFL的Tobias J. Kippenberg教授和马克斯-