首页 > 传媒 > 关键词  > 智能汽车技术最新资讯  > 正文

时序数据库IoTDB构筑长安汽车海量车况数据管理新引擎,助力智能网联汽车发展

2024-06-12 10:37 · 稿源: 站长之家用户

本文源于:长安汽车智能化研究院

业务场景介绍

1. 公司简介:长安汽车,全称“重庆长安汽车股份有限公司”,是中国领先的汽车制造商之一,以广泛的产品线和创新技术而闻名。长安汽车不仅提供多种乘用车和商用车,还在智能网联汽车技术方面处于行业前沿,特别是在车联网平台的开发上。

车联网平台是长安汽车智能化战略的核心组成部分,该平台利用云计算大数据、物联网和人工智能等技术,实现车辆与外部环境、其他车辆以及交通基础设施的互联互通。其核心平台VOT实现了万级车辆实时在线、毫秒级通讯互联、完整的生态接入能力,并在此基础上提供实时数据采集、海量数据分析计算、实时预警车辆故障、保证车辆安全驾驶等功能,显著提升了用户的用车体验。

2. 业务全景介绍:长安汽车智能化研究院承担了长安汽车智能化转型的重要角色,其车联网平台是公司智能化战略的重要组成部分,该平台借助大数据、云计算和人工智能等先进的数字技术,为消费者提供更安全、更舒适、更便捷的智能驾驶体验。主要包含的业务如下:

车联网核心平台VOT:公司基于超大规模云原生架构下设计的车云核心服务,业务涵盖车辆远控、车况、事件通讯、服务编排、规则引擎等核心能力,通过物联网时序数据库IoTDB实现了万级的车辆稳定接入、千万点每秒的数据并发处理以及超高的终端接入兼容性,是长安汽车所有车辆的云上大脑。

数据分析平台:公司基于Apache Doris升级了车联网数据分析平台,支持单日百亿级别数据的实时处理,并能实现十亿级别数据查询的秒级响应。该平台为长安汽车在提升用户用车体验、实时预警车辆故障、保证车辆安全驾驶等方面带来显著成果。

云器Lakehouse大数据平台:公司建设了基于云器Lakehouse的车联网大数据平台,面对超大规模数据量和业务的飞速发展,解决了成本高、用数难、运维烦等挑战。

车联网业务整体架构图

3. 平台时序数据管理能力建设:伴随着长安汽车旗下主要品牌(包括阿维塔、深蓝、启源等)的迅猛扩张以及智能网联汽车的数量呈指数级增长,车联网平台迎来了比较罕见的压力。这种增长不仅给车联网平台带来了数据并发处理的挑战,也导致了平台海量数据处理成本的上升、效率的下降以及实时和历史数据存储费用的增加。

具体来看,车况信息作为众多车辆数据中的核心数据,海量的连接数量导致数据上报量也呈指数级增长。在当前的日活跃用户数下,每日实时上行的车况数据量已达到惊人的200T。

IoTDB作为长安汽车车联网平台的核心数据存储引擎,扮演着至关重要的角色,不仅支持高并发的读写操作,还负责历史数据的长期存储。

业务需求痛点

1. 海量并发写入性能低。当前,在长安汽车闲时活跃用户量约200万的情况下,车联网平台实时上传的车况数据并发量已经稳定在数十万级别。由于不同车型导致的车况模板信息需求差异,动态存储成为了一个迫切需要解决的问题。

同时,相比传统汽车,智能汽车领域单个智能汽车的数据交互量呈现出数十倍的增长。以长安汽车近千万的日活跃用户量计算,长安汽车车联网平台长期承受着每秒超过50万次的数据传输压力。如此海量数据压力下,传统数据库面临着服务器资源高负载和写入性能的双重挑战。

2. 存储与查询灵活性差。在面对这些挑战时,长安汽车现有车况数据存储引擎HBase表现出明显的劣势:原数据存储引擎数据模型基于行键、列族和时间戳,所有的数据访问模式都必须围绕该模型设计。若数据访问模式与 HBase 的数据模型不匹配,可能会导致查询效率降低。

而且,HBase 不支持像传统关系型数据库般的联结操作和复杂的事务处理。因此在需要进行复杂查询的应用场景中,HBase 可能并不是理想选择。

此外,HBase 的查询通常涉及全表扫描,这在大型表中会消耗大量资源和时间。尽管这一问题可以通过使用过滤器来减少扫描的数据量,但仍然是一个需要考虑的性能瓶颈。

3. 历史数据存储成本高。HBase 作为一种基于列的存储解决方案,虽然适合存储稀疏数据,但在处理高频更新和小批量随机读写操作时效率并不理想。同时,尽管 HBase 支持 GZIP、Snappy 等多种压缩算法以有效减少存储空间占用,但这些操作可能会增加 CPU 使用率,并降低数据的读写性能,从而无法满足大数据量下数据实时处理的需求。

4. 中心计算资源紧张。长安汽车原有的车况数据架构基于纯云端的 HBase 存储,强烈依赖于 Hadoop 生态计算架构,这种计算架构并非轻量级,其所有计算成本都紧密围绕着建立的生态系统。这种依赖性,对云核心的负载造成了极大压力。

此外,HBase 基于单个主节点的集群架构,在面临故障时虽然可以继续连接其他区域(region),但主节点的恢复时间较长,从而导致计算链路性能下降,这也意味着所有计算压力都集中在云端,单就HBase而言其复杂的架构难以在边缘节点上部署。

选型 IoTDB 原因

1. 支持动态模板的海量并发处理能力。IoTDB基于时间序列的存储结构优化与Hbase针对基于时间序列的固定模板不同,IoTDB的元数据模板支持动态的增删改查,并在此基础上实现了物理量元数据共享,优化了存储及使用成本。

IoTDB也支持高并发连接,单台服务器可以处理数万次并发连接/秒,具备高写入吞吐的特点;单核处理写入请求可以达到数万次/秒,单台服务器的写入性能可以达到数千万点/秒;在集群环境下,写入性能可以线性扩展,集群的写入性能可达数亿点/秒。

2. 实时读写与有效压缩兼顾。IoTDB使用更有效的时间序列数据压缩技术,如 Gorilla 编码,可以在保持较高压缩比的同时,实现快速的数据读写,既降低了历史车况的存储压力,又满足了车联网下车况数据的实时使用场景。

3. 端云计算架构。IoTDB 的轻量级架构适用于边缘设备,具有有效的数据管理和存储能力。在边缘节点,IoTDB支持低延迟的查询,使实时数据分析成为可能;终端层的数据通过边缘层的IoTDB进行实时采集、处理和存储,并进行一系列的分析任务后,后续数据可上传到云端IoTDB,满足车联网领域中大规模数据存储、高速数据摄入和复杂数据分析的需求。

边缘IoTDB结合IoTDB云版本,可以支持在不同环境中管理时间序列数据,提升数据质量,降低云计算的成本。

IoTDB时序数据管理流程简述

长安汽车车联网平台原有方案采取较为简单的车况上报,经由网关转发后实时车况存储在redis,历史车况存储在Hbase。

基于IoTDB的新方案采用端云协作计算,部分车况数据在终端进行数据整合,也可根据特定需求(如国家采集标准的数据格式转换、周期数据整合等)自行在终端进行简单计算、短期存储。按照配置上传云端,通过规则引擎进行分发后,基于IoTDB实时性高的特征,同时进行实时数据推送、实时数据redis存储、历史数据IoTDB落库并提供查询接口做数据统一。

车联网平台VOT完整架构图

应用效果

1. 车况上报百万并发写入。面向长安汽车万级在线车辆实时车况数据上报、实时存储查询场景,IoTDB每秒写入能力达到800w+,并且支持水平扩展承载更高的压力。

当前,长安汽车VOT平台实时接入车辆数量达到200万辆,每日产生的数据量高达1500亿条记录。在这种规模下,依托IoTDB打造的新系统能够保持写入延迟在毫秒级别,数据实现快速可靠写入。

平台单日产生的数据量累计约200T,在经过IoTDB有效实时存储处理后,数据量得以大幅压缩,最终存储量约为30T,实现了约10倍的数据压缩比例。在当前的数据存量(覆盖近90天的时间范围)下,IoTDB在大数据处理和存储方面的卓越性能得以体现。

2. 历史车况有效查询。针对目前长安汽车的万亿级车况数据,IoTDB将查询延迟控制在50ms内,完全满足所需性能。

此外,VOT平台的数据处理架构设计充分考虑到高并发和大数据量的挑战,并基于IoTDB及其完善的生态接入能力,通过采用先进的数据索引和查询优化技术,从而支持快速的数据检索和分析。

不仅如此,平台还集成了机器学习算法,用于智能预测和维护车辆状态,进一步提升数据处理的效率和准确性。这些技术的应用不仅提高数据处理的速度、降低运维成本,也为用户提供了更加稳定和可靠的服务体验。

3. 平台效果展示

启源App首页

车联网VOT服务管理

推广

特别声明:以上内容(如有图片或视频亦包括在内)均为站长传媒平台用户上传并发布,本平台仅提供信息存储服务,对本页面内容所引致的错误、不确或遗漏,概不负任何法律责任,相关信息仅供参考。站长之家将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。任何单位或个人认为本页面内容可能涉嫌侵犯其知识产权或存在不实内容时,可及时向站长之家提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明(点击查看反馈联系地址)。本网站在收到上述法律文件后,将会依法依规核实信息,沟通删除相关内容或断开相关链接。

  • 相关推荐
  • 长安汽车辟谣:阿维塔抛弃华为、淡化华为标签纯属编造

    快科技4月18日消息,今日晚间,长安汽车不实信息举报中心发布《严正辟谣澄清》。长安汽车表示,近日,我们发现有关长安汽车股东变更、阿维塔与华为合作相关的谣言被有组织地扩散,现严正辟谣澄清如下:一、长安汽车控股股东兵装集团正在与其他国资央企集团筹划重组事项,目前尚在筹划阶段,关于重组细节暂未披露,请一切以官方公告为准。本次重组不会对本公司�

  • 长安汽车战略合作快手 以阵地经营智能营销夯实市场增量

    4月23日上海车展期间,长安汽车与快手签署战略合作协议,共建数字化营销新基建。双方将整合资源优势,在新媒体领域构建开放协作关系,通过AI创作、短视频内容发布、数据分析等打造数字化营销平台。快手拥有7.3亿月活用户,将助力长安汽车实现流量转化;长安汽车则凭借品牌影响力和产品矩阵优势,与快手共同探索"特色内容+情感共鸣+产品价值"的营销新模式。此次合作标志着汽车行业营销向数字化、智能化转型,双方将通过数据共享、精准触达用户等方式,为行业升级与用户体验提升贡献力量。

  • 山石数据备份一体机,一站式解决企业数据管理难题

    企业数据管理困境亟待突破1. 数据增长迅速,实时备份困难重重随着数字化进程的加速,企业数据量呈爆发式增长。业务系统 7×24 小时不间断运行,产生的数据瞬息万变。传统备份方式往往采用定时备份策略,无法及时捕捉数据的实时变化,导致两次备份之间的数据丢失风险极大。海量数据的备份需要消耗大量的时间和资源,传统备份手段在处理大规模数据时效率低下,难以�

  • 金仓数据库:深耕民生领域 赋能数字化转型征程

    第八届数字中国建设峰会4月29日在福州召开,以"二十五载奋进路 数字中国谱新篇"为主题,展示数字技术在交通、医疗、教育等民生领域的创新应用。电科金仓数据库在峰会亮相,其国产数据库已应用于地铁票务、公积金管理、医疗信息化等场景,支撑了合肥地铁自动售票、大连公积金管理等系统,日均处理数千万笔交易。在医疗领域,金仓数据库赋能100多家医院信息化建设,助力联勤保障部队第907医院构建AI医疗生态。未来将继续拓展在政务、制造等关键领域的应用,推动产业数字化转型。

  • 金仓数据库:三轮驱动,赋能数字中国高质量发展

    电科金仓作为国产数据库领军企业,累计申请专利600余项……

  • 金仓数据库:在信领域持续打造有竞争力的产业生态

    电科金仓总裁杜胜在第八届数字中国建设峰会上指出,单打独斗的企业模式已不适应网信领域国际竞争,构建产业生态才是关键。我国数据库产业发展迅速,电科金仓通过成立金兰组织,联合700多家企业、3200余生态伙伴,实现11000余款产品兼容互认,推动产业协同发展。企业强调开放合作生态,重视用户反馈机制,与高校共建实习基地、联合实验室,培养实战型数据库人才。目前电科金仓已与中国移动等大型企业合作创新,并积极参与行业标准制定,通过产学研融合推动产业高质量发展。

  • 长安汽车3月销量268052辆:一季度突破70万大关

    长安汽车公布2025年3月销量为268,052辆,同比增长3.5%,一季度销量突破70万辆。新能源销量为87,036辆,同比增长62%;海外销量为50,048辆,同比增长4.9%。阿维塔3月销量为10,475辆,同环比皆翻倍;长安福特3月销量为18,265辆,长安马自达3月销量为7,159辆。

  • 困局即是机遇:IBM 以‘咨询+技术’双引擎助力中国汽车行业从跟跑到领跑

    IBM聚焦汽车行业数字化转型,通过“咨询+技术”模式助力车企构建端到端智能生态系统,推动业务持续创新与升级。重点提及AI在提升效率、优化成本及创造价值方面的潜力,并强调数据驱动的智能化转型战略。同时,IBM展示其在全球范围内的丰富经验和成功案例,提出未来将以AI为核心加速行业变革。

  • 破局贸易战!中国完全自主中文数据库铸就数字基建基石,重塑农业全球竞争力

    在中美关税争端升级的背景下,中国科技企业通过核心技术突破重塑全球产业链格局。广东辰宜信息科技公司历时10余年自主研发"博流中文分布式多模数据库",融合链型、图型、关系型三重数据结构,攻克数据孤岛难题。该数据库具备全栈自研技术体系、数据安全与隐私保护、普惠化技术门槛三大核心价值,实现从底层架构到核心算法的完全自主可控。在农业领域,该技术通过数据融合与智能决策,优化云南野生菌产业链,实现"五流合一"的数字化管理,降低损耗率20%,推动中国农产品国际竞争力提升。这一突破不仅打破海外技术依赖,更构建了自主可控的技术体系,为中国参与全球数据标准制定奠定基础,展现了数字时代中国科技自立自强的实践担当。

  • 神助攻!乘分会崔东树:美增加关税将使中国电动汽车在海外有更大发展空间

    针对美国的关税大棒,乘联分会崔东树表示,这将使中国电动汽车在海外有更大发展空间。乘联分会秘书长崔东树今日表示,美国增加关税,使中国电动车汽车在海外市场有更大的发展空间。”由于美国关税的影响,不少汽车大厂都选择拒绝往美国发货,比如路虎、奥迪等,接下来势必有更多的汽车厂商选择这样做。