首页 > 业界 > 关键词  > OpenAI最新资讯  > 正文

AI前哨 | 安全、GPT5 、超强AI OpenAI CEO山姆·奥特曼中国首讲三大重点

2023-06-12 20:34 · 稿源: 凤凰网科技

凤凰网科技讯 《AI前哨》6月10日,在2023智源大会上,OpenAI联合创始人兼CEO Sam Altman作为连线嘉宾首次在中国发表演讲,他与北京智源理事长张宏江的对话中提到人工智能发展的特点,他认为10年内超强AI系统或将诞生,并呼吁通过大国合作协同监管。此外,被问到有关GPT-5的计划,他重申不会很快部署GPT-5,未来会有更多开源大模型,但没有具体模型和时间表。

凤凰网科技梳理了Sam Altman的核心观点:

1.可能下个十年我们会有非常强大的AI系统,新技术从根本上改变世界的速度比我们想象的快。未来的AGI系统或许具有10万行二进制代码,人类监管人员不太可能发现这样的模型是否在做一些邪恶的事情。因此,OpenAI正在致力于一些新的和互补的研究方向,希望能实现突破。”

2.“我们需要国际合作,以可核查的方式建立对安全开发日益强大的AI系统的国际间信任。我并不妄想这是一件容易的事,需要投入大量和持续的关注。”奥特曼引用《道德经》:“千里之行,始于足下”。

3.我很好奇接下来会发生什么,我们可能会尝试按顺序推出GPT-5模型,但不会很快。

以下为OpenAI联合创始人Sam Altman的演讲对话实录:

我最近在做全球巡回的访问,期间穿越五大洲近20个国家,接触了诸多的学生、开发者,这趟出行令人振奋,我们见证了全球各地的人们利用OpenAI的新技术来改变生活方式,我们也获得了非常宝贵的意见,以便于让我们的工具优化得更好。此外,我也有机会拜访了多位外国领导人,讨论确保越来越强大的人工智能系统安全部署所需的各种基础工作。

坦白说,世界的注意力主要集中在解决当今的人工智能问题上,很多问题的解决非常迫切,我们还有很多工作要做,不过鉴于我们已经取得的进展,我相信我们会实现目标。

今天,我想谈谈未来。具体来说,我们正在看到人工智能能力的迅速增长,现在需要做的是负责任地将其应用到世界中去。科学的历史告诉我们,技术进步遵循指数曲线。这在农业、工业和计算革命中得到了验证。现在,我们亲眼目睹人工智能变革,不仅因为我们正在见证它,而且因为它带来的变革速度。

它正在迅速拓展人类的想象力。想象一下,在未来十年,人工通用智能系统(常称为AGI)将会超过90年代初,人类所具备的专业水平,这些系统最终可能超过人类最大体量公司的总体生产力,这里的潜在收益是巨大的。

人工智能革命将带来可共享的财富,使改善人类互动标准成为可能,但我们必须管理好风险,并共同努力来实现预期目标。我时常感觉一些人放弃他们应有的权益来实现人类共同的目标,在今天很多领域仍然如此——大国之间经常通过合作的方式来实现共同目标,这种形式的合作对关键的医学和科学进展都会带来好处,比如根除小儿麻痹症和天花等疾病,以及全球减少气候变化风险的努力。

随着越来越强大的人工智能系统的出现,全球合作的利益变得前所未有地重要。如果我们不做好规划,一个设计用于改善公共卫生结果的未对齐的AI系统,可能会通过提供不平衡的建议来破坏整个集体系统。同样,一个旨在优化农业实践的人工智能系统可能会无意中损害经济和资源的消耗,缺乏对长期可持续性的考虑,从而影响食物生产和环境平衡。我希望我们都能认同,推进AGI安全是我们寻找共同立场的最重要领域之一,我希望把时间都集中在我们已经开始的领域。

其中一个领域是AGI治理。AGI的力量可以从根本上改变我们的文明,这突显了有意义的国际合作、协调的必要性,每个人都会从积极的治理方法中受益。如果我们将这个核心的最先进政策网络化,AGI系统可以为全球经济创造无与伦比的经济丰富,解决共同的挑战,如气候变化、全球健康安全,并在无数其他方面提升社会福祉。我深信这也是未来,我们深处同一个星球,需要明确投资AGI的安全性的意义。

我们必须为鲁莽的开发和部署可能引发的问题负起责任,其中最重要的两个领域是:首先,我们需要建立起包容的国际准则和标准,并在所有国家对AGI的使用中建立平等、统一的防护措施。其次,我们需要国际合作,以可验证的方式在全球范围内建立对越来越强大的AGI系统安全开发的信任,我知道这并不容易。

作为国际社会,我们需要对安全进行长期的关注和投入,以确保我们做得正确。《道德经》提醒我们,“千里之行,始于足下”,最有建设性的第一步是与国际科技界展开合作,推动增加AGI安全技术进展的透明度和知识的机制,发现紧急问题的研究人员应该与更多人共享研究成果。

我们需要更加深入地思考如何在鼓励推动国际合作的同时尊重和保护知识产权。如果我们做得好,这将为我们打开深化合作的新大门。更广泛地说,我们应该推动并引导与安全研究一致的投资。

当前,我们关注的是如何使AI系统成为一个有益和安全的助手,这对应的是如何训练模型,使其在没有安全威胁的前提下发挥积极作用,不过,随着AGI时代的接近,其带来的潜在影响、问题将呈指数级增长,所以,我们需要通过主动应对AGI带来的潜在挑战,将未来灾难性后果的风险降至最低。

从GPT-4完成预训练到部署,我们花了八个月的时间来研究这个如何前置预判风险并给出对策的问题,我们认为我们走在了正确的道路上,GPT-4的对齐程度超过当前所有的代码。不过,对于更高级的系统,对齐仍然是一个尚未解决的问题,我们认为需要新的技术方法以及加强治理监督,毕竟未来的AGI,可能是一个十万行二进制代码的系统。

人类监督者很难判断如此规模的模型是否在做一些损害的事情。因此,我们正在投资于几个新的,并且希望能取得成果的方向,其中之一是可扩展的监督,尝试使用AI系统来协助人类监督其他AI系统。例如,我们可以训练一个模型来帮助人类监督员找出其他模型代码中的缺陷。

第二个方向是可解释性。我们希望更好地理解模型内部发生的事情,我们最近发表了一篇论文,使用GPT-4来解释计算机的复杂状态。虽然还有很长的路要走,但我们相信先进的机器学习技术可以进一步提高我们解释的能力。

最终,我们的目标是训练AI系统具备更好地优化自身的能力,这种方法的一个有前景的方面在于——它可以与AI的发展速度相适应。随着未来的模型变得越来越智能和强大,作为助手,我们将找到更好的学习技术,在充分发挥AI的非凡好处的同时降低风险。

我们认为,美国、中国乃至世界各地的研究人员,在应对AI领域的技术挑战上的合作,存在巨大潜力,想象人类可以利用AI来解决世界上最重要的问题,大幅改善生存条件和质量。

萨姆奥特曼与张宏江问答部分

张宏江:您提到了正在和欧盟以及其他AI领域沟通全球治理,现在进展如何?我们距离AGI时代还有多远,有没有什么可以证明距离这一天还很遥远?假设我们发现了安全的人工智能,是否意味着也找到了不安全的人工智能?

萨姆奥特曼:这很难预测,仍然需要不断地研究才能提供结论,并且这条路不会一帆风顺,但AGI可能很快就会发生,但在未来的10年内,我们可能会拥超强的AI系统。

在那种情况下,全球监管就非常的紧迫,而且历史上也出现过很多新技术改变世界的相关的案例,现在这种改变速度正变得更快,考虑到这种紧迫性,我认为准备好迎接这一切并就安全问题作出正确回答非常重要。

张宏江:所以,您觉得这(正确回答安全相关的问题)是我们的优先事项?

萨姆奥特曼:我想强调的是,我们并不确切知道(未来可能会如何),尤其是现在对人工智能的定义存在差异,但我认为在10年内,我们应该为一个拥有超强AI系统的世界做好准备。

张宏江:您提到,OpenAI是一个致力于全球合作的机构,你们正在推动的全球合作有哪些,获得了哪些回应,有什么感受?

萨姆奥特曼:我认为人们非常重视AGI的风险和机遇。在过去的六个月里,相关讨论已经发生了很大变化。人们似乎真心致力于找到一种机制,既能让我们享受这些好处,又能在全球范围内共同努力减轻风险,我认为我们在这方面做的不错。

全球合作始终是困难的,但我认为这种机遇和威胁确实能够让世界走到一起,我们可以为这些系统制定一个框架和安全标准,这非常有帮助。

张宏江:在之前有没有的成功的案例,您能举个例子吗?

萨姆奥特曼:我们已经消除了一些全球合作的障碍。我们已经解决了技术上的困难,例如真实世界交易的问题。有很多例子可以说明我们已经有所突破。

张宏江:您提到了先进AI系统的对齐问题,我也注意到在过去几年中,许多AI系统都付出了很多努力来优化其对齐性能,我们可以在近些年里完成对AI安全的研究吗?

萨姆奥特曼:我认为“对齐”这个词在不同的方式中被使用。我认为我们需要解决整个挑战,即能够安全地访问系统意味着什么。从传统意义上讲,让模型按照用户意图进行沟通的对齐是其中的一部分。还会有其他问题,例如我们如何验证系统正在按照我们的意愿行事,以及我们将系统与哪些价值观对齐。我认为重要的是全面考虑如何获得安全的AI。

我认为对齐工作还在不断演变中。我们将纳入市场上已有的工作模式。很多这些技术仍处于纸面之上,但是我们需要超越技术的其他因素。这是一个复杂的问题。AI安全是最新的技术。因此,技术方面的创新是我们需要考虑的因素之一。我们需要思考关键的AI安全问题。我们如何应对这些挑战?就像我们大多数人都是科学家一样去思考。我们为什么要做这个?这是一个非常复杂的问题。我认为,为了确保我们解决了技术方面的安全问题,需要投入大量精力。

正如我之前提到的,确定我们要与之保持一致的价值观并不是一个技术问题。我们确实需要技术的参与,但这更是一个值得全社会深入讨论的问题。我们必须设计出公平的、有代表性和包容性的系统。正如您所指出的,我们不仅需要考虑AI模型本身的安全性,还需要考虑整个系统的安全性。因此,我们需要构建安全的分类器和检测器,以监测符合用户政策的情况。这一点很重要。

此外,我认为很难预测和预先解决任何技术可能出现的问题。因此,通过从实际使用中学习并快速部署数据,观察在一个国家中会发生什么,并给人们提供时间来学习、更新和思考这些模型将如何影响他们的生活,这也非常重要。

张宏江:中国、美国和欧洲是推动人工智能和创新的三个主要力量。您认为国际合作解决人工智能需求和决策方面的优势有哪些?这些优势如何结合起来产生影响?

萨姆奥特曼:我认为在人工智能安全性方面,普遍存在着需要许多不同观点的情况。我们还没有所有的答案,解决这个问题非常困难且重要。正如我提到的,这不仅仅是一个技术问题。使人工智能变得安全这件事受益于了解不同国家和不同背景下用户的偏好。因此,我们需要许多不同的观念来实现这一目标。中国拥有世界上一些最优秀的AI系统,从根本上讲,我认为这使研究人员在解决许多不同的AI系统的问题上面临困难。中国是世界上最好的地方,我真诚希望中国和美国的研究人员能对此做出巨大贡献。

张宏江:您能分享一些在这方面取得的成就吗?在这项工作中,您的计划或想法是什么?

萨姆奥特曼:我认为一个重要的进展是人们开始对如何安全开发先进AI系统的国际标准感到兴奋了。我们希望在训练广泛模型并在其部署之前,思考应该进行什么样的测试。我们还就构建反映人们目标、价值观和实践的数据库进行了新的讨论,人们可以利用这些数据库来使他们的系统与之对齐,并探讨了开展共享AI安全性研究的形式问题。所以,这些可能是目前出现的三个最具体的事情。

张宏江:我在这里有一个很棒的问题,来自观众——您是否打算重新开放GPT的源代码,就像在3.0之前一样?

萨姆奥特曼:关于源代码,我不太清楚,但可以确认一下。我们开源了一些模型,而其他模型则不开源,但随着时间的推移,我认为我们可以期望开源的模型会更多,我没有具体的模型或时间表,但这是我们正在努力的事情我不确定您是否听说过,但是我主持了一个开源机构,我们在开放源代码方面付出了很多努力,包括模型。

我将采用一种算法来开发模型,并引入新的Python模型和A-15模型。我们相信需要倾听并理解听众的反馈。所以,如果您明天对此有类似的见解,是否有什么可以去讨论以回应两位现在正在谈论的同事之间的担忧?是的,我的意思是,开源确实起着重要的作用。

开源模型的发展已经相当多了。我认为A-15模型也起着重要的作用,它为我们提供了额外的安全控制。您可以阻止某些用户,可以阻止某些类型的微调。这是一个重要的回归点。就目前模型的规模而言,我对此并不太担心,但随着模型变得越来越大,确保正确性可能会变得昂贵。我认为开源一切可能不是最优的路径,尽管这确实是正确的路径。我认为我们只需小心地朝着这些节点前进。

张宏江:是的,我认为开源模型确实有优势。总结一下我所说的,无论是GPT-4还是开源的模型及简化性AI,我们有没有可能需要改变整个基础设施或者模型的架构,使其像GPT-2一样简单?对此您有何想法?从能力和安全性的角度来看,我们可能确实需要一些非常不同的架构。

萨姆奥特曼:我认为我们将在这个能力上取得一些良好的进展,但在当前的模型类型中他们展现的效果更好,这是一个原因。但是,如果在10年后出现另一个巨大的飞跃,我也不会感到惊讶。我不记得很多年间有什么东西真正改变了的架构。另外,作为一名研究人员,我相信在座的许多人都会有这种好奇心,就是关于大模型和大容量模型的人工智能用户体验方面的下一步发展方向。我们是否会很快落后于增长曲线,或者下一个前沿是具有体现能力的模型,或者自主机器人是人工智能所关注的下一个前沿?我也非常好奇接下来会发生什么。我最喜欢做这项工作的事情就是能够处在研究的前沿,这是令人兴奋和惊喜的,我们还没有答案。因此,我们正在探索许多关于接下来可能出现什么、可能的新领域的想法。

当然,并不是说我们现在就能在序列中找到新的抗衰老模型,而是不用过于担心具体的时间点。我们在刚开始的时候就做过机器人方面的工作,并且我们对此非常兴奋,也经历了困难。我希望有一天我们能够回到这个话题。

张宏江:您还提到您正在研究如何制作更安全的模型,特别是使用CT4数据,在CT6的神经元有这个数据。这个工作在这个方向上是否有效?您是否能够在未来(用这种方法)推进人工智能领域?

我们将继续在这方面努力。所以,如果我认为我们会考虑到这一点,它是否具有可扩展性?因为我在向一群生物学科学家提问,他们专注于人类的学习。他们想借鉴这些思想并从中学习,以研究人类在工作中的表现。观察人工神经元比观察生物神经元更容易。

萨姆奥特曼:我认为这对人工神经网络是可行的。我认为使用更强大的模型或使用类似其他(生物)模型的模型的方法是可行的。但我不太确定如何将其应用于人脑。另外,我们正在讨论人工智能安全和API控制的话题。我们刚才在辩论,如果我们只有三个模型,那么我们会更安全。这就像一个核计划。您不希望(每个人)拥有核武器。因此,当我在控制模型数量时,如果控制不了接触模型和数据的人数的话是不安全的。

那么,我们是要控制模型的数量吗?从人类的角度来看,无论是拥有少量模型还是大量模型,都不能让我们更安全。更重要的是,我们是否有一种机制,确保任何柯林斯模型都需要经过足够的安全测试。我们是否有一个框架,让那些创建了完备柯林斯模型的人具备足够的资源和责任心,确保他们创造的东西是安全可靠的?来自麻省理工学院的教授Max是莱布尼兹研究所的一位教师,他提到了一种方法,但他认为这个方法不够具体。

从一个角度来看,我们可以研究如何控制隐私的泄露。如果您丢失了一封电子邮件,您仍然可以获取一份副本。在这个过程中您无法证明它是怎么获取到的。如果那家公司可以借用您的资料,那这将产生重大影响。我认为有一些行业正在发展不同的许可框架,将新技术引入市场,我认为我们应该借鉴它们。但我认为从根本上说,我们有着很好的购买数据的历史。

张宏江:最后一个问题,您对人工智能社区的设想是什么,以及在这个方向上可能具有很大推动力的因素是什么?

萨姆奥特曼:在过去我说过:是什么推动您如此高度地激励去从事人工智能安全性工作?对我而言,没有比安全性工作更令人兴奋、活力四溢、充实且重要的事情了。我坚信,如果您个人对一项重要的倡议非常认可,您将会有无穷的力量去解决它。这对我们团队来说确实如此。当我们刚开始的时侯,我觉得成功的概率会非常低。但如果我们能够找出如何构建人工智能,那它肯定会产生巨大变革。我们必须进行安全方面的工作对吧?这就是其中的一部分。但您不能阻止AI的发展。

举报

  • 相关推荐
  • 大家在看
  • Promoted:提升市场搜索、推荐和原生广告的排名

    Promoted是一个专注于市场搜索、推荐和原生广告排名的解决方案,通过先进的机器学习技术和大型语言模型搜索相关性AI技术,显著提升转化率和广告质量。它为市场平台提供了统一的搜索、推荐和广告服务,帮助企业实现更好的匹配和更高的收益。

  • Index-1.9B-Pure:轻量级大语言模型,专注于文本生成。

    Index-1.9B-Pure是Index系列模型中的轻量版本,专为文本生成而设计。它在2.8T的中英文语料上进行了预训练,与同等级模型相比,在多个评测基准上表现领先。该模型特别过滤了所有指令相关数据,以验证指令对benchmark的影响,适用于需要高质量文本生成的领域。

  • Index-1.9B-Character:19亿参数规模的角色扮演模型,支持few shots角色定制。

    Index-1.9B-Character是由Index团队自主研发的大型语言模型,专注于角色扮演领域,拥有19亿参数规模。该模型支持用户通过上传角色对话语料实现快速的角色定制,具备较高的角色一致性、对话能力和角色扮演吸引力。在CharacterEval权威benchmark评估中,整体均分排名第九,表现优于同量级模型。

  • Index-1.9B-Chat:基于19亿参数的对话生成模型

    Index-1.9B-Chat是一个基于19亿参数的对话生成模型,它通过SFT和DPO对齐技术,结合RAG实现fewshots角色扮演定制,具有较高的对话趣味性和定制性。该模型在2.8T中英文为主的语料上预训练,并且在多个评测基准上表现领先。

  • Llama3-70B-SteerLM-RM:70亿参数的多方面奖励模型

    Llama3-70B-SteerLM-RM是一个70亿参数的语言模型,用作属性预测模型,一个多方面的奖励模型,它在多个方面对模型响应进行评分,而不是传统奖励模型中的单一分数。该模型使用HelpSteer2数据集训练,并通过NVIDIA NeMo-Aligner进行训练,这是一个可扩展的工具包,用于高效和高效的模型对齐。

  • ComfyUI.org:开源AI工具,推动AI民主化。

    ComfyUI是一个开源AI模型,致力于推动AI工具的民主化和开源化。它由一个团队创建和维护,旨在为AI社区提供易于使用、安全和可靠的工具。ComfyUI支持通过各种工具,如节点管理器、节点注册表、命令行界面、自动化测试和公共文档来支持其生态系统。团队相信开源模型将在长期内胜过封闭模型,并致力于通过社区驱动的方式推动AI工具的发展。

  • Hedra:创造实验室,打造下一代人类叙事产品

    Hedra是一个创新的创造实验室,专注于将基础模型转化为产品,以驱动下一代的人类叙事技术。它提供了一个平台,让用户能够创造具有表达力和可控性的人物角色视频,并构建能够捕捉想象力的虚拟世界。Hedra的使命是通过提供完整的创意控制,让用户想象世界、角色和故事。

  • L4GM:4D重建模型,快速生成动画对象

    L4GM是一个4D大型重建模型,能够从单视图视频输入中快速生成动画对象。它采用了一种新颖的数据集,包含多视图视频,这些视频展示了Objaverse中渲染的动画对象。该数据集包含44K种不同的对象和110K个动画,从48个视角渲染,生成了12M个视频,总共包含300M帧。L4GM基于预训练的3D大型重建模型LGM构建,该模型能够从多视图图像输入中输出3D高斯椭球。L4GM输出每帧的3D高斯Splatting表示,然后将其上采样到更高的帧率以实现时间平滑。此外,L4GM还添加了时间自注意力层,以帮助学习时间上的一致性,并使用每个时间步的多视图渲染损失来训练模型。

  • Grazias:自动化收集和分享客户反馈。

    Grazias是一个免费的在线工具,用于自动化收集客户的推荐信,并集中管理这些推荐信,同时可以方便地在任何地方分享。它提供了一系列功能,包括简单的表单收集、自定义表单、自动跟进邮件以及详细的分析和图表,帮助企业更好地管理和利用客户反馈。

  • Olvy AI:客户反馈的智能管理助手

    Olvy AI是一个先进的客户反馈管理平台,它通过AI技术整合来自不同渠道的客户声音,包括调查、访谈、评论、支持票据和销售电话等,帮助企业快速获取洞察力。它通过自动化和智能化的方式,将客户反馈转化为可操作的见解,帮助企业做出更明智、更快速的决策。Olvy AI的主要优点包括提高团队生产力、节省时间、提供精准的数据驱动见解,以及保持与用户需求的紧密联系。

  • Aware:智能孕期社区应用

    Aware.ai Pregnancy App是一个为孕妇设计的智能社区应用,通过AI技术为孕妇提供个性化的社区推荐和资源。它通过匹配孕妇的背景和孕期目标,帮助她们找到合适的社区和资源,分享孕期故事和经验,并通过一对一连接获得其他孕妇的见解和建议。

  • VidAU:AI驱动的视频和音频生成平台,简化内容创作。

    VidAU AI Video & Audio Creator是一个AI驱动的视频和音频生成平台,它通过简化从构思到制作的整个内容创作过程,使得用户能够轻松创建引人入胜的视频。平台提供多种AI工具,包括视频更换、视频翻译、字幕翻译和去除、AI虚拟形象发言人以及文本转音频等功能,帮助用户提升视频内容的质量和吸引力。VidAU支持120多种语言的视频翻译,覆盖150多个国家,能够节省90%以上的视频制作时间。

  • The Prompt Report:系统性调研生成式AI的提示技术

    The Prompt Report 是一份系统性调研报告,专注于生成式人工智能(GenAI)的提示技术。它通过结合人类和机器的努力,从多个数据库中处理了4797条记录,提取出1565篇相关论文。报告提供了58种基于文本的技术,并补充了多模态和多语言技术的广泛集合。其目标是提供一个易于理解和实施的提示技术目录,并回顾了作为提示扩展的代理,包括评估输出和设计有助于安全性和安全性的提示的方法。此外,报告还应用提示技术在两个案例研究中进行了实践。

  • Color Copilot:AI助力癌症筛查与治疗决策

    Color Copilot是由Color Health与OpenAI合作开发的产品,利用GPT-4o技术将高度训练的肿瘤学家的专业知识带给医生、护士和初级保健医生,以支持他们为患者做出基于证据的癌症筛查和治疗决策。该产品专注于早期癌症的发现和有效管理患者进入治疗流程,通过自动化分析个人背景风险因素并应用个性化的筛查计划,以及为医生提供必要的测试决策支持,以加快治疗进程并节省宝贵时间。

  • Index-1.9B:哔哩哔哩自主研发的轻量级大语言模型

    Index-1.9B系列是哔哩哔哩公司自主研发的轻量级大语言模型,包含多种版本,如base、pure、chat和character等,适用于中英文为主的语料预训练,并在多个评测基准上表现优异。模型支持SFT和DPO对齐,以及RAG技术实现角色扮演定制,适用于对话生成、角色扮演等场景。

  • DIG-In:评估图像生成模型在不同地理区域的质量、多样性和一致性。

    DIG-In是一个用于评估文本到图像生成模型在不同地理区域中质量、多样性和一致性差异的库。它使用GeoDE和DollarStreet作为参考数据集,通过计算生成图像的相关特征和精度、覆盖度指标,以及使用CLIPScore指标来衡量模型的表现。该库支持研究人员和开发者对图像生成模型进行地理多样性的审计,以确保其在全球范围内的公平性和包容性。

  • AudioSeal:AI生成语音音频的本地化水印技术

    AudioSeal 是一种用于AI生成语音音频的本地化水印技术,具有最先进的鲁棒性和极快的检测速度。它通过联合训练一个嵌入水印的生成器和一个检测器,即使在音频编辑的情况下,也能在较长的音频中检测到水印片段。AudioSeal 设计了一个快速的单次通过检测器,检测速度比现有模型快两个数量级,非常适合大规模和实时应用。

  • Meta Chameleon:先进的机器学习模型,助力非商业研究。

    Meta Chameleon是由Meta公司开发的一款机器学习模型,它为非商业研究用途提供支持,包括研究、开发、教育、处理或分析等,并不以商业利益或对您或他人的货币补偿为主要目的。模型包括机器学习模型代码、训练好的模型权重、推理启用代码、训练启用代码、微调启用代码、演示材料等。

  • OmniChain:高效的自更新视觉工作流,适用于大型语言模型。

    OmniChain是一个为大型语言模型设计的高效自更新视觉工作流工具。它通过自定义逻辑流程引导AI语言模型,显著提高了工作效率。OmniChain利用链式记忆能力存储和回忆信息,基于这些信息做出决策。它允许用户创建像不知疲倦的机器人员工一样24/7工作的流程,只有在用户决定与之交流时才会暂停操作。OmniChain还可以通过特定过程引导较小的模型,提高效率和成本效益。此外,它能够访问底层操作系统读写文件和运行命令,生成和运行NodeJS代码片段或脚本,使用API,自动化任务等。OmniChain是私有的(自托管)、完全开源的,并通过非限制性的MIT许可证可供商业使用。

  • Huly Platform:一站式项目管理平台,替代Linear、Jira、Slack、Notion、Motion。

    Huly是一个强大的框架,旨在加速业务应用程序的开发,如CRM系统。该平台包括多个应用程序,例如聊天、项目管理、CRM、HRM和ATS。多个团队正在该平台上构建产品,包括Huly和TraceX。

今日大家都在搜的词: