首页 > 传媒 > 关键词  > UniPro最新资讯  > 正文

UniPro数据查询语言UQL 自建语法模型解决复杂检索

2022-10-19 09:43 · 稿源: 站长之家用户

SQL 是计算机语言中关系型数据库的标准语言,用来存储、检索和修改关系型数据库中存储的数据。所有的关系型数据库管理系统(RDBMS),比如 MySQL、Oracle、SQL Server等,都将 SQL 作为其标准处理语言。1979 年,Oracle 公司首先提供商用的 SQL,随后 IBM 公司也在 DB2 数据库中实

......

111本文由站长之家用户投稿发布于站长之家平台,本平台仅提供信息索引服务。为了保证文章信息的及时性,内容观点的准确性,平台将不提供完全的内容展现,本页面内容仅为平台搜索索引使用。需阅读完整内容的用户,请查看原文,获取内容详情。

推广

特别声明:以上内容(如有图片或视频亦包括在内)均为站长传媒平台用户上传并发布,本平台仅提供信息存储服务,对本页面内容所引致的错误、不确或遗漏,概不负任何法律责任,相关信息仅供参考。站长之家将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。任何单位或个人认为本页面内容可能涉嫌侵犯其知识产权或存在不实内容时,可及时向站长之家提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明(点击查看反馈联系地址)。本网站在收到上述法律文件后,将会依法依规核实信息,沟通删除相关内容或断开相关链接。

  • 相关推荐
  • Meta研究人员提出轻量级微调方法RA-DIT 以增强语言模型知识检索能力

    Meta的研究人员提出了一种名为检索增强双指令调优的新型人工智能方法,用于提升语言模型的知识检索能力。该方法试图解决大型语言模型在捕获较为冷门知识时的局限性以及大规模预训练的高计算成本问题。该研究证明了轻量级指令调优对检索增强语言模型的有效性,特别是在涉及大规模外部知识源的场景中。

  • OpenLM:一个专为中等规模语言模型设计的模型训练库

    OpenLM是一个旨在训练中等规模语言模型的PyTorch代码库,它强调了最大化GPU利用率和训练速度的设计。该库已经通过训练OpenLM-1B和OpenLM-7B两个语言模型,分别在1.6T和1.25T的文本标记上进行验证,取得了令人瞩目的成果。OpenLM的团队成员和致谢也在文章中列出,表明了该项目的合作性质和开源精神。

  • PIT框架提升大型语言模型的质量

    传统方法中,提高LLMs性能需要通过人工注释来收集更多多样化和高质量的训练数据,但这是一项资源密集型的任务,尤其是对于专业领域言。为了解决这个问题,来自伊利诺伊大学厄巴纳-香槟分校和Google的研究人员提出了“ImplicitSelf-Improvementframework”。通过从人类偏好数据中学习改进目标,PIT解决了传统提示方法的限制,并展示了在各种数据集和条件下提高LLMs响应质量的有效性。

  • 阿里魔搭社区开源知识检索模型Ziya-Reader

    阿里魔搭社区宣布开源Ziya-Reader。Ziya-Reader是一个针对知识检索的开源模型。除了Ziya-Reader,团队还自建了向量检索模型,并测试了整个搜索系统流水线的效果,结果超越了OpenAI。

  • 「深呼吸」让大模型表现更佳!谷歌DeepMind利用大语言模型生成Prompt,还是AI更懂AI

    【新智元导读】谷歌DeepMind提出了一个全新的优化框架OPRO,仅通过自然语言描述就可指导大语言模型逐步改进解决方案,实现各类优化任务。「深呼吸,一步一步地解决这个问题。这项研究首次提出并验证了使用大语言模型进行优化的有效性,为利用LLM进行更广泛优化任务提供了框架和经验,是这个新的研究方向的开拓性工作,具有重要意义。

  • Headless语言模型:通过捆绑嵌入提高模型的训练速度

    研究人员发现了一种改进语言模型性能的方法——Headless语言模型,即将输入嵌入与模型的其他嵌入捆绑在一起,并使用对比损失。通常情况下,语言模型的输入和输出嵌入层是分开的,但这种新方法通过捆绑它们,提高了模型的训练速度和准确性。这项工作为以对比学习取代交叉熵作为自监督预训练目标开辟了道路,为语言表示学习提供了一种高效可行的替代方案。

  • 南加州大学提出通道式轻量级重编码CLR 解决语言模型灾难性遗忘问题

    在持续学习领域,南加州大学和GoogleResearch提出了一项创新的方法,通道式轻量级重编码,旨在解决模型在持续学习新任务时出现的灾难性遗忘问题。持续学习的关键挑战是如何在学习新任务后仍然保持对旧任务的性能CLR方法提供了一种有前景的解决方案。这一创新方法有望为未来的持续学习研究和应用提供更多的可能性。

  • Lakera推出API,保护大型语言模型免受恶意提示攻击

    瑞士初创公司Lakera最近发布了一款旨在保护企业免受大型语言模型的恶意提示攻击的API。这项举措旨在解决LLMs在生成人类语言文本方面的卓越性能,但也可能受到恶意攻击的问题,尤其是通过所谓的“promptinjection”技术。通过将攻击转化为统计结构,Lakera有望在这一领域发挥重要作用,并确保企业可以安全地利用LLM的强大功能。

  • 谷歌、CMU研究表明:语言模型通过使用良好的视觉tokenizer首次击败了扩散模型

    来自谷歌、CMU的研究发现,语言模型在图像、视频生成领域的性能一直不如扩散模型,主要原因是缺乏有效的视觉表示。通过引入一种名为MAGVIT-v2的视频tokenizer,采用无查找量化和增强功能的设计,研究者成功改进了图像和视频生成的质量,超越了现有技术。通过这一研究,我们可以看到语言模型在视觉生成领域的潜力,以及如何通过创新的设计和改进来实现更好的性能。

  • Hugging Face 大语言模型三大优化技术

    大语言模型的生产部署面临着两个主要挑战:一是需要庞大的参数量,二是需要处理超长的上下文信息输入序列。HuggingFace基于他们在提供大型模型服务方面的经验,分享了一些应对这些难题的技术。文章深入剖析了大语言模型优化的关键技术点,对于产业实践具有重要参考价值。

今日大家都在搜的词: