首页 > 业界 > 关键词  > SparseCtrl最新资讯  > 正文

视频版ContorlNet来了!SparseCtrl增强AI生成视频可控性

2023-11-30 16:07 · 稿源:站长之家

要点:

  • SparseCtrl是一种用于文本到视频(T2V)扩散模型的技术,旨在通过时间稀疏信号实现对视频结构的灵活控制,无需过多输入。

  • 该方法引入了一个额外的条件编码器,用于处理这些稀疏信号,同时保持预训练的T2V模型不变。这种方法与多种形式的输入兼容,包括草图、深度和RGB图像,为视频生成提供更实用的控制方式。

  • SparseCtrl广泛适用于各种应用,包括故事板制作、深度渲染、关键帧动画和插值,为原始和个性化的T2V生成器提供了强大的泛化性能。

站长之家(ChinaZ.com)11月30日 消息:在文本到视频(T2V)领域的最新研究中,SparseCtrl技术通过引入时间稀疏信号实现了对视频结构的灵活控制。传统的文本提示在空间不确定性方面存在问题,容易导致模糊的帧组合。

为了提高可控性,SparseCtrl采用了密集结构信号,如逐帧深度/边缘序列,但与此同时减轻了推断的负担。这项技术通过引入额外的条件编码器来处理这些稀疏信号,同时保持预训练的T2V模型不受影响。

image.png

项目地址:https://guoyww.github.io/projects/SparseCtrl/

最令人振奋的是,SparseCtrl对各种输入形式具有兼容性,包括草图、深度和RGB图像,从而为视频生成提供了更为实际的控制方式。

这种方法的应用领域非常广泛,涵盖了多个方面。故事板制作、深度渲染、关键帧动画和插值都能从SparseCtrl中受益。通过大量实验证明了SparseCtrl在原始和个性化T2V生成器上的泛化能力。这标志着在T2V领域迈出了一大步,不仅提高了生成视频的质量,还为用户提供了更多实用的控制手段。这项研究展示了SparseCtrl的巨大潜力,有望在未来推动文本到视频技术的发展。

在技术原理方面,SparseCtrl通过引入额外的条件编码器,实现了对时间稀疏信号的高效处理,这使得模型能够更好地理解和利用这些信号,从而实现对视频生成过程的更灵活控制。

这种技术设计的巧妙之处在于,它不需要改变已有的T2V模型,而是通过增加一个组件来增强其功能。这样的设计不仅提高了可扩展性,还有助于更好地利用现有的模型和数据。

SparseCtrl的出现为文本到视频领域注入了新的活力。其灵活性、兼容性和泛化能力使其在实际应用中具有广阔的前景。未来,我们可以期待看到SparseCtrl在各种领域的广泛应用,为视频生成领域带来更多的创新和可能性。

举报

  • 相关推荐
  • 大家在看
  • MeshAnything:3D资产的自动生成工具

    MeshAnything是一个利用自回归变换器进行艺术家级网格生成的模型,它可以将任何3D表示形式的资产转换为艺术家创建的网格(AMs),这些网格可以无缝应用于3D行业。它通过较少的面数生成网格,显著提高了存储、渲染和模拟效率,同时实现了与先前方法相当的精度。

  • HunyuanDiT-v1.1:多分辨率扩散变换器,支持中英文理解

    HunyuanDiT-v1.1是由腾讯Hunyuan团队开发的一款多分辨率扩散变换模型,它具备精细的中英文理解能力。该模型通过精心设计的变换器结构、文本编码器和位置编码,结合从头开始构建的完整数据管道,实现数据的迭代优化。HunyuanDiT-v1.1能够执行多轮多模态对话,根据上下文生成和细化图像。经过50多名专业人类评估员的全面评估,HunyuanDiT-v1.1在中文到图像生成方面与其他开源模型相比,达到了新的最先进水平。

  • UniAnimate:高效生成一致性人物视频动画的模型

    UniAnimate是一个用于人物图像动画的统一视频扩散模型框架。它通过将参考图像、姿势指导和噪声视频映射到一个共同的特征空间,以减少优化难度并确保时间上的连贯性。UniAnimate能够处理长序列,支持随机噪声输入和首帧条件输入,显著提高了生成长期视频的能力。此外,它还探索了基于状态空间模型的替代时间建模架构,以替代原始的计算密集型时间Transformer。UniAnimate在定量和定性评估中都取得了优于现有最先进技术的合成结果,并且能够通过迭代使用首帧条件策略生成高度一致的一分钟视频。

  • LVBench:长视频理解基准测试

    LVBench是一个专门设计用于长视频理解的基准测试,旨在推动多模态大型语言模型在理解数小时长视频方面的能力,这对于长期决策制定、深入电影评论和讨论、现场体育解说等实际应用至关重要。

  • Mo:通过卡片式学习,轻松掌握AI科技知识。

    Mo是一款结合超现实主义艺术和堂吉诃德理想主义精神的AI科技学习APP。它通过卡片形式,以图文、动画、视频、语音等多样化内容,使AI和科技知识的学习变得生动有趣。Mo不仅覆盖了AI的基础知识,还包含了元宇宙、大数据、大模型等前沿技术,适合各种背景的学习者,旨在打造一个个性化的学习体验。

  • 开搜AI搜索:面向大众的AI问答搜索引擎

    开搜AI问答搜索引擎是一款面向大众的、直达答案的AI问答搜索引擎,它能够帮助用户从海量的文献资料中筛选出有用的信息,提供直接、精准的答案,并且能够自动总结重点、生成大纲、思维导图并下载。

  • AI Math Notes:一个交互式绘图应用,用于数学方程的绘制和计算。

    AI Math Notes 是一个开源的交互式绘图应用程序,允许用户在画布上绘制数学方程。应用程序利用多模态大型语言模型(LLM)计算并显示结果。该应用程序使用Python开发,利用Tkinter库创建图形用户界面,使用PIL进行图像处理。灵感来源于Apple在2024年全球开发者大会(WWDC)上展示的'Math Notes'。

  • VideoTetris:文本到视频生成的创新框架

    VideoTetris是一个新颖的框架,它实现了文本到视频的生成,特别适用于处理包含多个对象或对象数量动态变化的复杂视频生成场景。该框架通过空间时间组合扩散技术,精确地遵循复杂的文本语义,并通过操作和组合去噪网络的空间和时间注意力图来实现。此外,它还引入了一种新的参考帧注意力机制,以提高自回归视频生成的一致性。VideoTetris在组合文本到视频生成方面取得了令人印象深刻的定性和定量结果。

  • Visual Sketchpad:多模态语言模型的视觉推理工具

    Visual Sketchpad 是一种为多模态大型语言模型(LLMs)提供视觉草图板和绘图工具的框架。它允许模型在进行规划和推理时,根据自己绘制的视觉工件进行操作。与以往使用文本作为推理步骤的方法不同,Visual Sketchpad 使模型能够使用线条、框、标记等更接近人类绘图方式的元素进行绘图,从而更好地促进推理。此外,它还可以在绘图过程中使用专家视觉模型,例如使用目标检测模型绘制边界框,或使用分割模型绘制掩码,以进一步提高视觉感知和推理能力。

  • GoMate:基于RAG框架的可靠输入和可信输出系统

    GoMate是一个基于Retrieval-Augmented Generation (RAG)框架的模型,专注于提供可靠输入和可信输出。它通过结合检索和生成技术,提高信息检索和文本生成的准确性和可靠性。GoMate适用于需要高效、准确信息处理的领域,如自然语言处理、知识问答等。

  • SD3-Controlnet-Canny:一种用于生成图像的深度学习模型。

    SD3-Controlnet-Canny 是一种基于深度学习的图像生成模型,它能够根据用户提供的文本提示生成具有特定风格的图像。该模型利用控制网络技术,可以更精确地控制生成图像的细节和风格,从而提高图像生成的质量和多样性。

  • Tencent EMMA:多模态文本到图像生成模型

    EMMA是一个基于最前沿的文本到图像扩散模型ELLA构建的新型图像生成模型,能够接受多模态提示,通过创新的多模态特征连接器设计,有效整合文本和补充模态信息。该模型通过冻结原始T2I扩散模型的所有参数,并仅调整一些额外层,揭示了预训练的T2I扩散模型可以秘密接受多模态提示的有趣特性。EMMA易于适应不同的现有框架,是生成个性化和上下文感知图像甚至视频的灵活有效工具。

  • Dream Machine AI:释放AI视频创造的力量,轻松生成惊人视频

    Dream Machine是由Luma Labs开发的一款先进的人工智能模型,旨在快速从文本和图片生成高质量的、逼真的视频。这个高度可扩展且高效的变换模型直接在视频上训练,使其能够产生物理上准确、一致且充满事件的镜头。Dream Machine AI是朝着创建通用想象力引擎迈出的重要一步,使每个人都能轻松访问。它可以生成带有平滑动作、电影质量和戏剧元素的5秒视频片段,将静态快照转化为动态故事。该模型理解物理世界中人与人之间、动物和物体之间的互动,允许创建具有极佳角色一致性和准确物理的视频。此外,Dream Machine AI支持广泛的流畅、电影化和自然主义的摄像机运动,与场景的情感和内容相匹配。

  • CV Screener:简化招聘流程的CV筛选模板

    CV Screener是MindPal公司提供的一款在线AI解决方案,旨在帮助现代专业人士提高工作效率。通过4步CV筛选模板,用户可以轻松评估求职者,识别顶尖人才。产品背景信息包括MindPal公司致力于采用AI技术提升工作效率,并且产品支持结果保存、自定义数据添加、工作流程定制等功能。

  • NewRA:企业级AI聊天机器人,快速构建智能对话。

    NewRA是一个基于云端的AI聊天机器人平台,支持现代广泛使用的AI模型。它利用企业数据和信息集,在几分钟内构建AI驱动的聊天机器人。NewRA提供个性化应用,使用户能够利用现有数据和文档,增强AI驱动的决策制定和操作。NewRA的主要优点包括快速响应、定制化知识库、实时测试和调整、以及与周边系统的集成能力。

  • MDLM:一种高效的遮蔽扩散语言模型。

    Masked Diffusion Language Models (MDLM) 是一种新型的语言模型,它通过遮蔽和扩散机制来生成高质量的文本数据。MDLM 通过改进的训练方法和简化的目标函数,提高了遮蔽扩散模型的性能,使其在语言建模基准测试中达到了新的最佳状态,并接近自回归模型的困惑度。MDLM 的主要优点包括高效的采样器、支持生成任意长度的文本,以及在长程依赖和可控生成方面的优势。

  • HOI-Swap:视频编辑中的手-物交互意识

    HOI-Swap是一个基于扩散模型的视频编辑框架,专注于处理视频编辑中手与物体交互的复杂性。该模型通过自监督训练,能够在单帧中实现物体交换,并学习根据物体属性变化调整手的交互模式,如手的抓握方式。第二阶段将单帧编辑扩展到整个视频序列,通过运动对齐和视频生成,实现高质量的视频编辑。

  • InstantX:AI内容生成研究组织

    InstantX是一个专注于AI内容生成的独立研究组织,致力于文本到图像的生成技术。其研究项目包括风格保持的文本到图像生成(InstantStyle)和零样本身份保持生成(InstantID)。该组织通过GitHub社区进行项目更新和交流,推动AI在图像生成领域的应用和发展。

  • Hallo:基于扩散模型的肖像图像动画技术

    Hallo是一个由复旦大学开发的肖像图像动画技术,它利用扩散模型生成逼真且动态的肖像动画。与传统依赖参数模型的中间面部表示不同,Hallo采用端到端的扩散范式,并引入了一个分层的音频驱动视觉合成模块,以增强音频输入和视觉输出之间的对齐精度,包括嘴唇、表情和姿态运动。该技术提供了对表情和姿态多样性的自适应控制,能够更有效地实现个性化定制,适用于不同身份的人。

  • Chatty Bots:与AI聊天机器人进行个性化对话

    Chatty Bots是一个提供AI聊天机器人的平台,用户可以与具有独特个性的虚拟伴侣进行互动,这些机器人旨在娱乐、信息传递和愉悦用户。用户可以将喜欢的机器人添加到Discord或Slack中,享受更加个性化和便捷的聊天体验。

今日大家都在搜的词:

热文

  • 3 天
  • 7天