首页 > 传媒 > 关键词  > 大数据最新资讯  > 正文

IBM魏永明:拥抱基础模型与生成式AI,迎接“AI+”新时代

2023-06-13 09:50 · 稿源: 站长之家用户

——参加2023数博会“大数据大算力大模型”圆桌对话有感

2023 年 5 月 25 日,受组委会邀请,我有幸代表IBM参加了在贵阳举办的 2023 中国国际大数据产业博览会上就“大数据、大算力、大模型”议题展开的高端圆桌对话。随着ChatGPT的问世, 企业对AI大型语言模型产生了极大兴趣,整个产业界都在积极探讨如何能够把握大模型带来的机会,把人工智能技术应用于产业,真正做到“数实相融”,实现创新突破。

( 作者: IBM大中华区混合云及人工智能专家实验室总经理魏永明 )

IBM是全球AI技术和应用的重要参与者,见证和引领了AI领域的数次变革。ChatGPT的到来,让我们看到无论是产品还是解决方案,都将从当下“数据为先”的数字化向“AI为先”数字化转变。这意味着未来十年或二十年,领先的公司会把应用AI作为企业数字化的首要任务,这将极大地影响企业的运营模式、与员工合作的模式,与客户和供应商的合作模式。“AI为先”是当下企业所面临的数字化新格局。

这一新格局最后会使得产业链重新布局,会使企业的价值链发生改变。AI的能力的快速提升,AI的价值和企业现有的业务流程的紧密整合,推动企业提升其交付的价值、优化价值交付的模式、改变和生态的关系,最终会导致企业甚至产业的价值链重整。

为了快速适应这个变化,在价值链的重整中获得独特的竞争优势,我们要重点关注以下三点:

第 一, 企业首先关心的是人工智能训练的成本和价值如何达到一个美好的平衡。今天,不管是从电费还是计算,成本都非常高,绿色计算不可或缺。

第二, AI大模型要发挥价值,不管是商业价值,还是社会价值作用,关键的一点是AI输出的结果必须是可信的。如果一台手术用人工智能做支撑,一个错误决定带来的后果是不堪设想的。将AI应用于严肃商用环境,无论是驾驶、健康、金融交易,还是大型的生产制造,不可控的错误会造成灾难性的后果,所以,我们需要建立一个机制,把AI从生成到运用的过程管理起来,这就是人工智能的治理,这是第二个非常重要的环节,有了治理的机制,AI可能导致的错误或者合规问题可以及时规避,这个就是我们常说的可信的AI。

第三, 人工智能在不同行业、不同业务场景的应用,要考虑将通用与专用这两类人工智能很好地结合起来。企业的核心的竞争力通常是体现其专有的人工智能应用中,专有的人工智能是使用企业的核心数据资产训练出来的,包含企业的核心的业务知识和数据。

将以上三点放在一起,就为我们提出了一个全新的命题——企业需要构建下一代的平台,一个从算力开始往上管理的全栈式的企业级人工智能平台。这正是目前IBM致力在做的事情,为企业提供这样一个平台,帮助他们在当下数字化的基础之上,将AI应用于企业的核心业务,在提升竞争力的同时,能够很好地应对企业应用大模型和生成式AI所面临的各项挑战——例如,AI训练的算力成本挑战、安全与可信AI的挑战、技能与文化的挑战等等,让企业级AI在商业环境中的应用可以快速普及。

构建基于特定领域的基础模型将加速企业级的AI应用

IBM认为,企业应该关注一个更核心也更广泛的概念——基础模型,这个概念是在 2021 年 8 月,由斯坦福大学人类中心人工智能研究所 (HAI)下属的基础模型研究中心(CRFM)提出来的。而早在五年前,IBM就开始研究基础模型。

基础模型是基于一种特定类型的神经网络架构(称为Transformer架构)而构建,为生成相关数据元素的序列(例如句子)而设。Transformer架构能够帮助基础模型理解未标记数据,并将输入转换为输出,从而生成新的内容,这正是生成式人工智能衍生的源头(ChatGPT就是基于Transformer架构)。基础模型在大量未标记的数据上进行训练,可以适应新的场景和用例。尽管基础模型也需要前期大量投资,但每次使用时,它都会摊销 AI 模型构建的初始工作,因为微调基于基础模型构建的其他模型的数据要求要比从头开始构建低得多。这既可以大幅提高投资回报率 (ROI),又可以大大缩短上市时间。

今天,企业里的数据,无论是传感器、图像、语音还是其他各种不同类型的业务数据,都是有待释放的智能元素。这也从某种程度上回应了IBM为什么要专注于基础模型,以及IBM要建立怎样的基础模型,来帮助企业快速安全地把握大模型和生成式AI所带来的机会。

IBM 正在构建一组针对多种类型的业务数据进行训练的特定领域的基础模型,包括代码、时间序列数据、表格数据、地理空间数据、半结构化数据和混合模态数据(如文本与图像的组合)。这些基础模型将大大增强从代码创建到药物发现再到网络安全等的各种应用,并将极大地影响人们与技术的交互方式,不仅将改变我们完成业务的方式,还将改变客户对其业务的看法。

IBM认为,这些基础模型的灵活性和可扩展性将显著加速企业对AI的采用。企业现在不应再把AI视为战术上的“附加组件”,而应该把AI置于其业务的战略核心。事实上,在两年内,IBM预计基础模型将为企业环境中约三分之一的AI提供动力。在IBM将基础模型应用于客户的早期工作中,IBM看到客户的价值实现时间比传统的AI方法快70%。 为此,IBM正致力为需要利用大型语言模型(LLMs)、IT自动化模型、数字劳动力模型、网络安全模型和很多其他专用模型的业务场景开发基础模型,而这些仅仅是一个开始。

IBM watsonx让 AI成为企业的核心生产力

未来,企业的AI采用,将会呈现出在多个云上使用多个模型的混合发展趋势。当一家企业决定要采用AI时,通常会面临三个选择:第 一,构建自己的模型;第二,使用开源的模型,或者使用IBM或其他厂商的模型,或两者兼用。第三,直接使用IBM的基础模型来获得结果。无论客户和合作伙伴做出何种选择,IBM都可以助力客户进行尝试和实验,并进行模型调优、构建和评估,帮助他们在任何云上都能部署并调整模型。这与IBM围绕混合云和AI的战略相一致。

过去,在数据为先的发展阶段,聚焦数据与数据生命周期, IBM 提出人工智能阶梯(AI Ladder)的方法,从数据的收集、组织、分析、融合四个步骤为企业规模化部署AI奠定基础。这些工作在一个现代化的人工智能阶梯当中则处于底层,也就是所谓 “+AI”的工作。今天,企业在积极探索如何将AI用于企业的应用,如何对企业的工作流实现智能自动化、甚至替换现有的工作流,最终让AI来完成工作——企业正步入以AI为先的 “AI+” 的全新发展阶段。

今年 5 月初,IBM推出针对基础模型和生成式AI的新一代企业级AI与数据平台的watsonx,这距离IBM Watson AI参加美国综艺智力比赛节目“危险边缘(Jeopardy)”,已经过去了近 13 年。IBM watsonx是一套完整的AI开发平台和管理工具,融合业界领先的技术和理念(如基础模型、生成式AI等),更是融合了IBM企业级AI与数据治理的产品与实施经验,是一个可以为企业用户提供先进的机器学习、数据管理和生成式AI功能,提供涵盖数据管理、模型训练、验证、调优、部署、治理与监管的全生命周期的平台和完整工具。IBM watsonx可以帮助企业全面、灵活、便捷地在各个生产和业务环节应用AI,并在整个过程中严格保护企业的私有数据和信息安全,同时满足 AI 治理和监管的要求。IBM watsonx 包含有三个组件:watsonx.ai、watsonx.data 和 watsonx.governance。

如果说,ChatGPT让人们见识了AI的强大能力,IBM watsonx则把强大的 AI 能力以可信和安全的方式规模化地引入企业,把AI的能力转化成企业的核心生产力。我们相信,watsonx可以扩展和加速领先的企业级AI 对于每个企业的影响。

扩展与加速AI采用率,为客户和合作伙伴携手共创

IBM坚信,在一个“AI为先”的商业时代,企业的差异化竞争优势和独特的商业价值,将越来越多地从 AI 模型对于企业独特数据和业务领域知识的适应性当中获得。通过watsonx,IBM为企业提供了一个基于混合云和基础模型的生成式企业级AI与数据的平台,可以帮助客户和合作伙伴填补在采用大模型和生成式AI过程中所面临的技能、算力、成本等难以跨越的鸿沟,借助IBM的技术、行业与生态力量,专注于自身业务,构建独特的竞争优势与商业价值。 

人工智能模型的业务需求越精细,价值创造就会越独特。客户如何在各个应用场景中实现人工智能?IBM已经确定的早期应用场景包括数字劳动力、IT自动化、应用程序现代化、安全性和可持续性等,AI将为企业带来全新的数字生产力水平。客户和合作伙伴可以根据自身的业务战略和痛点,从适合自己的业务场景开启与IBM的基础模型与AI应用的共创之旅。

例如,在数字劳动力的场景下,借助 AI 和智能自动化,业务人员能够做出更好的决策并更快地交付结果。这将改变人力资源、IT、采购、财务、数据分析师的工作方式,让他们可以专注于业务,大大提高生产力。IT智能自动化能够提高企业系统的性能表现,对系统实现智能自动化,获得新的效率和弹性水平,同时,AIOps解决方案还可以帮助组织快速降低IT成本。在应用程序现代化方面,借助AI,通过DevOps、容器、Kubernetes和微服务可以使现有的应用程序快速实现现代化。在安全性方面,通过将AI引入安全领域,可以扩大可见性范围并提升响应能力,通过机器学习和自然语言处理等AI技术提供快速洞察,以减少每日警报的噪音,大幅缩短响应时间。此外,AI还可以减少排放、浪费和成本,将可持续性嵌入到日常运营中来获取新的效率,帮助组织做好准备应对可能扰乱业务的气候风险,更容易地评估他们自己对环境的影响,并满足合规性要求。

不仅如此,IBM还携手合作伙伴,扩展企业的AI采用率。例如,IBM将Watson Assistant和Watson Discovery嵌入SAP 解决方案,不久前双方又宣布把 IBM Watson AI嵌入SAP 解决方案,提供新的AI驱动型洞察与自动化,为 SAP解决方案全组合打造更为有效的用户体验;将Watson Discovery和自然语言软件库嵌入Adobe Acrobat,帮助其用户更好地处理PDF文件;借助 IBM Watson Order,麦当劳实现了“来得速”服务的自动化,使其员工专注于食品外送和顾客服务;Watson Code Assistant 和 Red Hat Ansible 共同实现IT自动化,优化红帽社区开发者体验;在通用汽车的车载应用中内嵌红帽技术栈,并基于红帽OpenShift平台优化其智能车载应用的AI工作负载。

回到根本,应对算力挑战

在数博会的“大数据、大算力、大模型”的圆桌对话中,算力挑战是大家非常关注的议题。回到根本,我认为,应对算力挑战,除了基础设施的硬件层面,软件也非常重要:怎样把算力抽象起来,数据怎样能够低成本的治理,计算出来的结果如何能与企业及用户一端现有的系统整合起来,算力如何来调度,这里面包含了很多软件技术。因此,当下技术的研发,不光是在基础架构层面,从平台一直到应用,技术提供商都必须关注,为企业客户提供全栈式的产品和服务。这也是今天IBM在中国为企业客户提供人工智能大数据和数字化转型服务非常重要的一点。

这是一个颠覆性的时代,未来几年我们的产业将发生很多颠覆性的变化。处于这个变局当中,每个企业都需要具备应用人工智能、利用数字化技术的能力;作为个人,我们也许要开始重新设计自己的职业,重新打造自己未来开展日常工作的能力,这一点非常重要。面对新的人工智能信息化时代,我们每个人都要与时俱进作出改变,追赶技术。与大家共勉! ( 文章来源: 机器之心 )

关于 IBM

IBM 是全球领先的混合云、人工智能及企业服务提供商,帮助超过 175 个国家和地区的客户,从其拥有的数据中获取商业洞察,简化业务流程,降低成本,并获得行业竞争优势。金融服务、电信和医疗健康等关键基础设施领域的超过 4000 家政府和企业实体依靠 IBM 混合云平台和红帽 OpenShift 快速、有效、安全地实现数字化转型。IBM 在人工智能、量子计算、行业云解决方案和企业服务方面的突破性创新为我们的客户提供了开放和灵活的选择。对企业诚信、透明治理、社会责任、包容文化和服务精神的长期承诺是 IBM 业务发展的基石。

推广

特别声明:以上内容(如有图片或视频亦包括在内)均为站长传媒平台用户上传并发布,本平台仅提供信息存储服务,对本页面内容所引致的错误、不确或遗漏,概不负任何法律责任,相关信息仅供参考。站长之家将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。任何单位或个人认为本页面内容可能涉嫌侵犯其知识产权或存在不实内容时,可及时向站长之家提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明(点击查看反馈联系地址)。本网站在收到上述法律文件后,将会依法依规核实信息,沟通删除相关内容或断开相关链接。

  • 相关推荐
  • ISC.AI 2025 人工智能安全治理与创新实践论坛圆满召开

    ISC.AI2025人工智能安全论坛在北京召开,聚焦AI安全治理与创新实践。论坛汇集顶尖专家,探讨大模型安全评估与防护、智能体安全、AI治理等前沿议题。360集团张向征指出,随着Agent技术爆发式应用,AI安全已成为产业核心焦点。专家们强调需构建AI安全防护体系,应对大模型直接访问核心系统带来的全新挑战。中国电子院彭健提出企业合规建设需关注九大要素,清华大学苏航揭示智能体安全风险远超传统AI。华为云范建军倡导端到端大模型安全防护,中国信通院杨哲超呼吁构建协同治理框架。论坛为构建安全、普惠、负责任的人工智能未来贡献智慧。

  • Razer(雷蛇)在新加坡设立AI CENTER OF EXCELLENCE,加速人工智能投资布局

    雷蛇宣布在新加坡设立全球AI卓越中心,并计划在欧洲和美国建立类似机构,推动游戏与开发者工具领域的创新。新加坡中心将招聘150名AI工程师,专注于下一代AI游戏技术研发。雷蛇还推出AI工具套件,包括Game Co-AI和QA Co-AI,帮助开发者提升游戏质量和开发效率。该战略布局正值全球游戏市场快速增长期,预计2033年AI游戏市场规模将达280亿美元。新加坡数字产业发展局表示,此举将巩固该国作为区域AI创新中心的地位。

  • 加佳科技亮相世界人工智能大会,参与浦东重点项目签约并发布创新技术成果

    2025世界人工智能大会(WAIC)7月26日在上海开幕。加佳智云的"曦源一号"项目入选浦东新区人工智能重点项目并签约合作协议。加佳科技首次发布"数字商务智能体训练场"创新技术平台,与多家企业达成战略合作。浦东新区人工智能产业规模超1600亿元,占全市40%。加佳科技通过"曦源一号"训练场基础底座平台,为行业提供"硬件+软件+产业解决方案"一体化服务,推动AI与产业深度融合。大会期间,加佳科技展示其核心成果"数字商务智能体训练场"平台,该平台依托国产替代算力,提供全生命周期开发运营服务,降低企业AI应用门槛。加佳科技还与多家企业达成合作,加速构建开放共生的AI产业生态。

  • 润和软件携丰富金融行业实践成果亮相2025世界人工智能大会

    润和软件在2025世界人工智能大会(WAIC2025)上展示了JettoAI+智能助手平台等系列智慧金融解决方案,包括测试智能助手、消保助手、研报助手等创新产品。作为金融科技领域领先企业,润和软件深耕AI与金融业务融合,已服务6大国有银行、12家股份制银行及超280家中小金融机构。报告显示中国金融科技市场预计将以13.3%复合增长率高速增长,2028年科技投入或突破6500亿元。润和软件�

  • 零门槛数字IP上线,邦彦Nuwaai掀起世界人工智能大会(WAIC)互动体验热潮​

    邦彦技术在2025世界人工智能大会发布Nuwaai数字人平台,主打"3分钟创建AI数字IP"概念。该平台通过三大核心模块(形象塑造、才艺赋能、个性养成)实现数字人全流程创作,支持古风、职业装等多种风格定制,并能加载营销、直播等专业技能。相比传统方案,Nuwaai将开发成本降至8元起,交付周期缩短至3分钟,支持按需加载功能。平台定位"数字人生产力工具",覆盖营销、社交、娱乐等多场景应用,旨在推动数字人技术从概念探索迈向实用化。目前官网已开放注册,面向个人创作者和企业用户提供低成本数字IP解决方案。

  • 星辰聚智·才启未来:2025世界人工智能大会中国电信发布系列前沿能力及AI产品

    7月27日,TeleAI科技前沿论坛在上海模速空间举办,主题为"星辰聚智·才启未来"。论坛汇聚全球行业专家、青年学者及企业家,探讨AI创新趋势。中国电信发布多项AI成果:1)TeleAI研究院凭借大模型创新获2025SAIL之星奖;2)提出"智传网"三大定律(信容律、同源律、集成律)及生成式智能传输等创新技术;3)发布"星小辰"智能终端,整合高德地图、航旅纵横等服务;4)推出首款智能眼镜"天翼AI智镜",具备物体识别、实时翻译等功能;5)启动"青年智算计划",投入超600P算力支持AI创新。论坛展示AI在终端、机器人等领域的深度应用,体现中国电信"云改数转智惠"战略布局。

  • Checkout.com项尧受邀参与 WAIC2025 共话人工智能时代跨境支付新机遇

    2025世界人工智能大会(WAIC)于7月26-28日在上海举办,全球领先支付解决方案提供商Checkout.com受邀参与"无界人工智能:深化中英合作"主题论坛。其大中华区总经理项尧与行业专家探讨AI赋能跨境商业生态的创新实践,重点分享公司在代理电商平台(Agentic Commerce)领域的支付技术创新,包括与Mastercard、Visa合作构建支持AI代理交易的技术框架。作为支付行业领军者,Checkout.com通过智能支付网络帮助电商平台优化交易管理,支持多币种支付,每年为客户解锁数亿美元收入潜力。本届WAIC展览面积首次突破7万平方米,吸引800余家企业参展,涵盖40余款大模型及60余款智能机器人。

  • 智元机器人姚卯青:以世界模型驱动飞轮,解锁具身智能规模化应用

    智元机器人合伙人在2025世界机器人大会上发表演讲,系统阐述了公司在具身智能领域的探索成果与未来方向。公司已发布多款机器人产品,建成规模化生产线与训练场,并在算法领域实现多项创新。为解决数据难题,智元开源了AgiBot World百万真机数据集,并推出具身智能基座模型GO-1,该模型在三大场景测试中表现优异。公司创新性地提出"本体-数据-模型-场景"全栈布局理念,通过飞轮迭代逻辑加速技术突破。智元还推出GE Bench评测工具,并计划下半年发布新一代机器人AgiBot G2。过去一年,智元已在柔性制造、物流分拣等多个场景取得突破性应用成果。

  • 全赛道获奖!聚铭网络闪耀第二届雄安未来之城场景汇网络安全技术应用大赛

    第二届雄安未来之城场景汇网络安全技术应用大赛圆满落幕。聚铭网络凭借深厚技术积累与创新能力,在"网络安全创新创意"、"网络安全解决方案"、"网络安全监测防御产品"三大赛道全部入围并荣获优秀奖,实现全赛道上榜。本届大赛以"汇聚网络安全技术,护航智能城市建设"为主题,聚焦雄安智能城市建设需求。聚铭网络申报的基于AI智慧异构环境的安全运营项目、异构融合技术的智慧安全运营中心解决方案、异构纵深防御技术的下一代智慧安全运营中心平台三大项目表现亮眼,均获分赛道优秀奖。此次"全赛道获奖"不仅是对聚铭网络技术创新能力的权威认可,更彰显了其在网络攻防实战、体系化运营及AI融合创新领域的综合实力。

  • 聚焦大模型训练效率提升 北大依托昇腾突破细粒度混合并行技术

    北京大学崔斌教授团队在鹏城实验室支持下,研发了面向大模型的高效分布式训练框架。该框架通过统一训练接口、细粒度模型切分与并行策略搜索算法,解决了训练任务多样性和负载不均问题,实现训练效率提升15%。同时利用昇腾计算资源管理能力,优化硬件通信效率,通过计算通信重叠技术提升流水线效率。研究成果已在NeurIPS等顶会发表3篇论文,展现了国产算力在分布式计算领域的潜力,为AI产业自主化突破提供支撑。

今日大家都在搜的词: