首页 > 传媒 > 关键词  > 人工智能最新资讯  > 正文

从“助手”到诺贝尔奖:AI将成为网络安全防护新利器

2024-10-14 14:07 · 稿源: 站长之家用户

自 2022 年底ChatGPT上线迄今不过两年,从日常工作到多媒体内容输出,各类人工智能(AI)应用已经成为很多行业不可或缺的工作“助手”。正当人们对身边的智能助手感到习以为常时,AI却以更加震撼的方式刷新人类对它的认知。在刚刚过去的 10 月 8 日与 10 月 9 日, 2024 诺贝尔奖物理学与化学两个重要奖项都被人工智能(AI)的相关成果及科学家取得。与此同时,特斯拉发布的Robotaxi 以及机器人Optimus都让人们对未来AI的应用场景充满期待。

或许,未来AI能否在诺贝尔其他奖项继续大放异彩我们不得而知,但AI已经渗透到人们生活的各个方面已是不争的事实。因此,随着数字威胁日趋严峻,在AI的主场—IT领域对人工智能技术在全行业、尤其是安全方面的应用需求变得十分迫切。根据 Check Point Research 的报告,在 2024 年 1 月至 8 月期间,全球公用事业部门(包括关键基础设施)每机构平均每周遭受的网络攻击次数高达 1514 次——与去年相比增加 37%,在所有行业中排名第五,进一步凸显了采取 AI 安全防护的必要性。这项先进技术正在革新关键基础设施的网络安全防护实践,为应对日益复杂的攻击提供了比较罕见的防御能力。借助 AI 实时处理大量数据流的能力,企业现在能够极其快速、准确地检测异常情况和潜在威胁。

在机器学习算法的加持下,这些系统不断发展,可以始终领先网络犯罪分子一步。对于电网、供水系统和交通网络运营商来说,基于 AI 的解决方案可提供强大的保护,防止可能会造成破坏性影响的中断事件。通过自动执行日常安全任务,AI 能够让人类专家专注于应对复杂的挑战,从而提高整体威胁响应能力。虽然 AI 可能被用于发起攻击,而且需要持续的系统更新,但是将 AI 融入关键基础设施防护的优势远远超过了这些潜在弊端。随着世界变得日益互联,AI 将在保护我们社会的数字骨干网方面发挥关键作用。

AI 在网络安全防护中的应用现状和生成式 AI 的兴起

关键基础设施领域基于 AI 的威胁检测

AI 正在重塑关键基础设施领域的威胁检测,例如化学、关键制造、能源、交通、医疗保健、供水和污水处理系统。机器学习算法能够处理来自复杂网络的海量数据,以识别异常模式和潜在的安全漏洞。AI 系统能够检测到传统方法不易察觉到的入侵指标,支持快速做出响应,从而防止威胁破坏基本服务或泄露敏感数据。

加强安全防护自动化和编排

在关键基础设施中,集成式 AI 可增强安全防护自动化和编排,从而简化对网络威胁的响应。智能系统能够自主调查警报、关联不同来源的数据并触发响应措施。得益于这一自动化,人工安全防护团队可将更多精力用于战略规划和复杂的威胁分析,从而确保关键基础设施灵活抵御网络攻击。

生成式 AI:网络安全防护的双刃剑

对于生成式 AI 在关键基础设施防护中的应用,机遇和挑战并存。就防御而言,它有助于代码分析、漏洞发现和威胁情报整合。然而,攻击者也可以利用生成式 AI 发起复杂的网络钓鱼攻击、开发新的恶意软件变体或发现新的攻击向量。鉴于这一双重性质,关键部门必须采取积极主动的网络安全防护方法。

融合式网络 AI:整体防御策略

为了有效应对 AI 威胁,关键基础设施组织正在采用一种“融合式网络 AI”方法。该策略需要将 AI 功能集成到整个安全堆栈中,从而提高预测和缓解威胁的能力。借助 AI 原生架构,组织可构建强大的防御系统,保护重要系统和数据免受日益复杂的网络攻击。

AI 正如何应用于关键基础设施

通过提有效率、可靠性和可持续发展能力,AI 正在重塑关键基础设施,能源行业便是其中的典型。在智能电网中,AI 通过预测能源需求模式、优化能源分配和集成可再生能源发挥着至关重要的作用。这些功能有助于实现有效的能源分配,减少浪费,并确保稳定可靠的电力供应,即便是在太阳能和风能等间歇性能源的管理中也是如此。

AI 在预测性维护方面也起着关键作用,能够利用算法来预测潜在设备故障。这种积极主动的方法可通过延长关键基础设施组件的使用寿命,比较大限度地减少停机时间并降低维护成本。此外,AI 还可通过实时监控和分析能耗,提高建筑物和工业流程的能效。AI 系统可根据使用模式实时调整供暖、制冷和照明,从而优化能源使用、降低成本并减少碳排放。

AI 在关键基础设施中的应用现状:聚焦交通运输行业

AI 正在交通运输行业掀起一场效率、安全和可持续发展的技术革命。

· 自动驾驶汽车:作为自动驾驶汽车的核心,AI 可帮助车辆导航、解读传感器数据并做出实时决策。机器学习算法可处理来自摄像头、激光雷达和雷达的输入数据,以检测障碍物、识别交通信号并预测行人和其他车辆的活动。

· 交通管理:AI 系统通过分析来自摄像头、传感器和 GPS 设备的数据,优化市区的交通流量。这些系统能够预测交通拥堵情况,调整交通信号灯的变换时间,并推荐替代路线,以减少路程时间和排放。目前有几个正在开发中的项目将应急车辆与信号系统相结合,以确保应急车辆畅通无阻。

· 预测性维护:在铁路和公路等交通基础设施中,基于 AI 的预测性维护利用来自物联网传感器的数据预测设备故障,防患于未然。这既能减少停机时间和维护成本,又能提高安全性。

· 公共交通优化:AI 可根据实时数据优化路线和时间表,从而改善公共交通。它有助于管理车队营运、预测乘客需求和提高整体服务效率。

· 安全监控:基于 AI 的监控系统可监控机场和火车站等交通枢纽的安全威胁,利用面部识别和行为分析来识别可疑活动,保障乘客安全。

· 供应链与物流:在物流业,AI 通过预测需求、管理库存和规划有效的配送路线来优化供应链运营,从而节省成本并提高服务水平。

· 智能基础设施:AI 还推动了智能基础设施的发展,例如智能交通系统和智能电网,通过与交通网络相结合,提高了连通性和效率。



AI 在医疗保健基础设施中的应用现状:聚焦网络安全防护

由于患者数据的敏感性,医疗保健行业日益成为网络威胁的目标。AI 可增强该行业的网络安全防护。

· 威胁检测和预防:AI 系统分析网络流量和用户行为,以实时识别异常情况并拦截恶意软件、勒索软件和网络钓鱼攻击等威胁。

· 数据保护:AI 可加强数据加密和访问控制,识别未经授权的访问并执行安全协议来保护患者数据。

事件响应:AI 可自动执行事件响应流程,快速识别和处理安全漏洞,并根据严重程度划分威胁的优先级。

· 漏洞管理:AI 可识别和修补医疗保健系统中的漏洞,预测易受攻击之处并推荐更新。

· 欺诈检测:AI 通过识别异常模式和差异来检测欺诈活动。

AI 在关键基础设施中的应用现状:教育行业

通过增强学习体验、优化管理流程和提供个性化教育,AI 正在重塑教育行业。

· 个性化学习:AI 通过分析学生的学习模式、调整难度和提供实时反馈,根据学生的个人需求量身定制教育内容,例如 Coursera 和可汗学院等平台。

· 智能辅导系统:AI 助教提供个性化课外辅导,为学生解疑答惑和提供指导,例如 MATHia 和 IBM 的 Watson Tutor 等工具。

· 自动评分:基于 Gradescope 等系统提供的详细反馈,AI 可自动为测试和论文评分,这能够帮助教育工作者节省时间,并确保评估的一致性。

· 预测性分析:AI 可预测学生的表现并识别遇到困难的学生,从而及时进行干预和提供支持,并预测注册趋势和资源需求。

· 提升无障碍服务能力:AI 通过语音识别和文本转语音等工具提高了无障碍服务能力,增强了教学场景对残障学生的包容性。

· 虚拟现实和增强现实:基于 AI 的虚拟现实和增强现实技术可打造沉浸式互动学习体验,助力学生探索医学和工程学等领域的复杂课题。

· 研究与数据分析:AI 可分析大型数据集,提供教学方法和学习成果方面的有益洞察,从而帮助制定教育策略和政策。

综上所述,在关键基础设施中采用 AI 技术的重要性与日剧增。Check Point建议企业用户可通过集成 AI 增强安全措施,提高运营韧性。AI 系统不仅能快速识别和响应威胁,降低中断风险,而且还能优化资源管理,预测维护需求,从而提高运营效率。要想在日新月异的技术环境中保持领先地位,关键基础设施部门应重视 AI 技术的采用。这不仅有助于提升关键资产的安全保护,又能确保长期可持续发展能力和可靠性。

推广

特别声明:以上内容(如有图片或视频亦包括在内)均为站长传媒平台用户上传并发布,本平台仅提供信息存储服务,对本页面内容所引致的错误、不确或遗漏,概不负任何法律责任,相关信息仅供参考。站长之家将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。任何单位或个人认为本页面内容可能涉嫌侵犯其知识产权或存在不实内容时,可及时向站长之家提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明(点击查看反馈联系地址)。本网站在收到上述法律文件后,将会依法依规核实信息,沟通删除相关内容或断开相关链接。

  • 相关推荐
  • 迎“人工智能+”政策东风!2025中国智能产业大会&吴文俊人工智能创新大会即将落地常州

    在全球AI竞争加剧背景下,国务院印发《关于深入实施“人工智能+”行动的意见》,推动AI与经济社会深度融合。中国人工智能学会主办的“2025第十四届中国智能产业大会暨吴文俊人工智能创新大会”将于8月30-31日在常州举行,聚焦破解AI产业“卡脖子”难题。大会设置15场专题会议和3场特色活动,覆盖基础技术突破、核心应用落地、交叉学科融合等领域,为产学研各界搭建高

  • 北电数智亮相世界人工智能大会,“四链融合”推动AI产业落地

    2025世界人工智能大会“人工智能+”战略领军人才与创新发展论坛圆满落幕。论坛聚焦“人才领航智启未来”主题,汇聚中科院、社科院专家及中国联通、腾讯云等机构代表,围绕“人工智能+”行动分享经验,为AI高质量发展筑牢人才根基、激发创新动能。北电数智CMO杨震出席并发表演讲,分享AI行业落地实践,强调紧跟国家战略,推进产业、创新、人才、资本四链融合,打造面向不同场景的AI解决方案,全方位助力AI产业发展。

  • 海尔冰箱唯一获批“制冷家电人工智能技术山东省工程研究中心”

    海尔冰箱在人工智能领域取得新突破,主导建设的"制冷家电人工智能技术山东省工程研究中心"成为2025年山东省工程研究中心认定名单中唯一入选的冰箱品牌。该中心聚焦人工智能、物联网、大数据等技术方向,开发了全空间智慧保鲜舱冰箱等140多项行业首创产品,近三年获授权发明专利803件。海尔冰箱还推出行业首款接入DeepSeek的AI全空间保鲜冰箱,具备方言识别、降噪技术等功能,显著提升用户体验。市场数据显示,2023年1-7月海尔冰箱以47%市场份额稳居行业第一。通过AI技术赋能,海尔冰箱正引领行业向精准、智能保鲜时代跨越。

  • 都是做AI应用,为什么「美图」能持续让用户付费

    这是《窄播Weekly》的第65期,本期我们关注的商业动态是:美图抓住AI带来的战略机遇,让付费订阅收入实现了连续增长,超过广告业务成为主要营收支柱。 美团在8月18日发布的最新一份财报显示,其2025年上半年总收入为18亿元,经调整归母净利润为4.7亿元,同比增长71.3%。其中,以付费订阅为主的影像与设计产品业务收入达到13.5亿元,同比增长45.2%,占总收入的74%。 这背后是

  • 下一个爆款在哪儿?2025英特尔人工智能创新应用大赛获奖名单揭晓

    8月16日,2025英特尔人工智能创新应用大赛总决赛在深圳落幕。40支优秀团队从2817支队伍中脱颖而出,围绕工业、教育、心理健康、游戏等领域展开对决。大赛展示了AI从云端走向边缘的趋势,依托酷睿Ultra处理器和低代码开发工具,推动AI应用本地化落地。获奖作品包括动力电池机器人协作拆卸系统和AI生成PPT服务,体现AI与产业需求的深度融合。英特尔与联想、惠普等合作伙伴共同为开发者提供全栈支持,加速AI技术普及和商业化进程。

  • 微算法科技(NASDAQ:MLGO)基于人工智能优化构建混合ARIMA模型,提高比特币价格预测准确性

    随着数字资产市场兴起,比特币等加密货币价格预测成为焦点。传统模型难以准确捕捉其非线性波动,微算法科技引入AI技术优化ARIMA模型,结合LSTM网络构建混合模型,提升预测准确性。通过AI算法自动处理数据缺失、异常值检测及参数优化,实现更可靠的比特币价格预测,为投资者提供决策支持。

  • ISC.AI 2025 人工智能安全治理与创新实践论坛圆满召开

    ISC.AI2025人工智能安全论坛在北京召开,聚焦AI安全治理与创新实践。论坛汇集顶尖专家,探讨大模型安全评估与防护、智能体安全、AI治理等前沿议题。360集团张向征指出,随着Agent技术爆发式应用,AI安全已成为产业核心焦点。专家们强调需构建AI安全防护体系,应对大模型直接访问核心系统带来的全新挑战。中国电子院彭健提出企业合规建设需关注九大要素,清华大学苏航揭示智能体安全风险远超传统AI。华为云范建军倡导端到端大模型安全防护,中国信通院杨哲超呼吁构建协同治理框架。论坛为构建安全、普惠、负责任的人工智能未来贡献智慧。

  • AI应用太烧钱?我们用一款精准的AI大模型费用计算器做出了清晰预算

    初创团队“智询未来”在开发AI问答应用时面临核心模型选择困境:GPT-4-turbo能力强但价高,Claude-3长文本处理优,Llama-3成本低但性能稍弱。通过AIbase成本计算器精准测算,发现Claude-3-Sonnet性价比最优,每月可省近4000元,还能通过优化提示词进一步降本15%。数据驱动的决策让团队将节省预算投入数据安全和提示词优化,凸显成本测算对初创企业技术选型的重要性。

  • 真补贴、真落地!阿里云发布AI应用先锋计划,助力企业跑通AI第一程

    阿里云AI应用先锋计划通过“云+AI+行业适配”模式,助力企业突破AI落地瓶颈。该计划提供云资源补贴、POC服务、专家咨询及联合品牌推广等支持,降低企业AI应用门槛。结合端云协同架构,解决算力成本高、模型部署难等问题,已在智能硬件、教育、政务等领域实现案例落地,推动AI从技术尝鲜走向常态化应用。

  • 最新AI资讯哪里看?AI技术人员如何从论文到产业应用全覆盖?

    文章指出,ArXiv、ACL和NeurIPS等论文库是AI开发者获取前沿技术的重要来源,但仅依赖论文库已不足以构建完整竞争力。作者强调需要超越论文本身,关注技术落地、产业应用及生态动态。推荐利用AIbase等技术资讯平台作为补充,提供筛选整合、趋势解读和产业视角,帮助开发者高效把握技术动态,避免闭门造车,构建复合型信息摄入体系。

今日大家都在搜的词: