11.11云上盛惠!海量产品 · 轻松上云!云服务器首年1.8折起,买1年送3个月!超值优惠,性能稳定,让您的云端之旅更加畅享。快来腾讯云选购吧!
乍一看,一个由51个离子组成的系统可能看起来很容易管理。但即使这些带电原子只是在两种状态之间来回切换,其结果是系统可以采取超过两万亿(1015)种不同的排序。这样一个系统的行为实际上是不可能用常规计算机计算的,特别是由于引入系统的激发可以无规律地传播。这种运动的一个特点是,除了预期的较小的跳跃外,有时也会发生明显较大的跳跃。这种现象也可以在蜜蜂的飞行和股票市场上不寻常的激烈运动中观察到。模拟量子动力学:传统上是一项困难的任务虽然模拟一个复杂的量子系统的动力学即使对传统的超级计算机来说也是一个非常高的要
在单个量子水平上控制机械运动的系统正在成为一个有前途的量子技术平台。新的实验工作现在确定了如何在不破坏量子态的情况下测量这种系统的量子特性--这是充分挖掘机械量子系统潜力的一个关键因素。当提到量子力学系统时,人们可能会想到单光子和隔离良好的离子和原子,或者电子在晶体中传播。在量子力学的背景下,更奇特的是真正的机械量子系统;也就是说,大质量物体的机械运动,如振动是量化的。图为声学共振器的光学显微镜图像(两个较大的圆盘,其内部是压电换能器)和连接到超导量子轨道(白色结构)的天线在一系列开创性的实验中,
来自布里斯托尔大学量子工程技术实验室(QETLabs)的科学家们开发了一种算法,为量子系统的基础物理学提供了宝贵的见解:为量子计算和传感的重大进展铺平了道路,并有可能翻开科学研究的新一页。在物理学中,粒子系统及其演变是由数学模型描述的,需要理论论证和实验验证的成功互动。更为复杂的是对粒子系统在量子力学水平上相互作用的描述,这通常是用哈密尔顿模型来完成的。由于量子态的性质,从观测中制定哈密顿模型的过程变得?