首页 > 传媒 > 关键词  > 正文

因为看见,所以相信——依图科技对未来AI之浅析

2024-07-10 16:16 · 稿源: 站长之家用户

最近,大量关于人工智能的研究报告,投资人、创业者、学者热议AI的趋势和对社会各行业的影响,不乏对AI技术和产业发展的误解,很容易有误导性。宏观上,议题大体分为三个方面:AI是多大的事?谁是真正的AI player?AI的场景在哪里?

从科学研究者和创业者的双视角谈谈我的主要观点:AI的边界,只有领军人物才可能准确把握和拓展;先进企业,因为远见造就势能;AI的未来,很难相比,没有历史可以借鉴,也没有保障可以预测。

“S”曲线看AI格局

我对AI发展历史和预测,用上图的”S”形曲线建模(Sigmoid函数,恰好也是用来刻画神经网络中神经元的activation function)。横轴表示时间,纵轴表示机器智能水平。曲线上的点表示某个时间点的全球比较高智能水平。2013年开始是新AI时代(深度学习),2013年前的机器智能发展水平相较于近5年的发展基本可以忽略不计。红线代表悲观派(AI退潮、AI泡沫等),2017年之后很快出现发展停顿;蓝线代表乐观派,2017年之后还有快速发展。值得强调的是,蓝红两条曲线对AI历史有相同认识,但市场上很多论调或研究报告看到的是另一条曲线,很大概率调研看到的AI水平离比较高水平有很大差距。分析AI格局的不同立场,可以通过解读S曲线的三个方面:

1、AI过去的发展以及AI未来发展程度和速率的预测

2、AI发展水平和商业场景的关系

3、各个player的所在位置和差距

具体来说,我们先从AI过去5年的发展情况谈起,以人脸识别作为例子,把人脸从N个人中找到的概率在95%,纵轴就是可识别的规模(N的大小)。

技术不是趋同,而是会放大差距、解锁场景

2017年人脸识别比较高水平可识别规模在20亿人,大概比2016年可识别千万提高两百倍,比2015年提高了数万倍。在2017年全球最保障的人脸识别测试中(NIST),我们比第二名Vocord团队,在千万比对测试上领先2%(Vocord在另一测试集比腾讯优图高10%),这个就是大家常说的技术水平趋同,高一两个百分点没有意义(引申出难兑现成竞争价值)。这个误区需要从两个方面解读:

首先方面,算法在亿级、十亿级比对的领先会快速放大到5%,20%。这是一般的算法性能曲线的规律。除了可识别规模上的重大差异,还体现在难(hard)的数据上的识别率差异。从算法经验来说,黑人、女性、小孩、大年龄跨度、遮挡等是较难识别的群体和类别。在这些子类上,不同算法之间的性能差异会更大。

超大规模下的评测本身就是一个不简单的学术命题,还需要大量的数据支撑,真正能观测到20亿数据下性能的人少之又少,例如美国很难建立20亿级的测试集。这不是访谈一些人脸识别研究从业者就能获得,这是误区的首先个来源。

第二方面,算法提高,扩大可识别规模,就会解锁更多商业应用场景。百万、千万识别规模对应的是身份认证场景,远程认证、手机解锁都属于此类。“技术无差异”的论调在这个场景下倒是可以成立。但在对亿级和十亿比对有刚性需求的场景下,几乎就是行与不行的问题。“非关键性应用”的论断误导性极强。

假定每路人流为万,要在万路视频中,搜索性能相当于要求算法百亿、千亿规模上的可识别率。这比其他场景的性能要求再提高千倍。以不同算法为基础的产品端体验差异就被同比例放大。

总结来说,99%识别率的算法和99.99%的算法,区别在于可解锁的应用场景。这些新的场景解锁,是较早锋的算法团队和垂直领域的开拓者共同努力,也不是访谈一般的相关从业者就能感知变革的最前沿,这是误区的另一个来源。

技术水平的三个层次VIE:Vision(远见),Insight(洞见),Execution(执行)

技术实力该如何评估比较呢?最常见的是测试比赛的较高排名、实际案例、招投标PK成绩、论文等。这些或许能区分是不是前10名的AI团队,但很难区分较好的团队。我对技术的三层解构:Vision,远见,或战略格局、技术趋势判断;Insight,洞见,算法本质和客观世界分布规律的理解;Execution,执行,算法实现、数据获取、工程计算平台等。具体来说:

最基础的Execution就是算法做到什么水平,特别是大体框架已知后,能快速实现,包括基础算法、场景数据、计算实验平台、产品应用等。比如,AlphaGo出来后,多快能复现;语音识别多快能追上全球较好的结果。优质的Execution,不是开源的算法平台可以弥补。特定领域的专家能帮助团队快速提高对应领域Execution的水平。这个层面,中国团队应该是世界知名的。Google如果是世界首先的话,不论是下棋、人脸识别、语音识别等,中国的水平应该不会比 Facebook、Microsoft、Apple、Amazon等差,甚至某些方面稍强些。大部人比较技术,基本就在这个层次。但更重要的、威力更大的是上面的两个层次。

再往上一层是Insight,考察对技术的深刻认知。包括算法模型的数学解释、客观世界分布规律的独到见解。Insight指导如何使用数据、计算力(就是指导如何使用算法甚至创新算法)。这层决定能不能比Google做得更好,或者能保持同一发展节奏。假定拥有深度学习算法框架、海量数据在同样水平,但是大家对算法性能调教还有巨大差距。以人脸识别为例,我们使用了2亿张人脸图片(几十亿张图片的子集)训练,有效模型参数达到10亿量级,利用对人脸这个对象的属性先验的合理假设,包括光照、年龄、种族、运动模糊、成像解析度等,模型定制、数据如何组合、计算如何加速在性能调优和模型学习效率上(就是上面提到的Execution)都有重大差异。这就是为什么拥有算法、算力、数据条件的互联网巨头也不见得能在单项AI任务上能做到全球前三。

Vision:预测发展趋势、定义未来方向,想象对生活、生产的影响。这除了需要对技术的深刻理解,还需要对技术的创新能力,以及技术商业价值的想象力、创造力。技术的远见,回答AI的场景在哪以及多快到来。

强的Execution,Insight肯定不错,但可能毫无Vision;比较强的Vision,Insight肯定知名,但Execution可能很差。VIE都很强的团队全球极其稀缺。用深度学习领域比较强的两位大师Hinton和LeCun谈一下我的感受。在2010年前,学术界不少人已经在谈大数据对机器学习的重要性,Hinton团队2012年在LeCun发明的算法基础上,用了百万的训练数据,在ImageNet上取得的突破性进展;同一时期,LeCun团队只用了不到十万的数据。但是在Hinton公布ImageNet结果的头两个月,LeCun团队没法重现Hinton用自己算法的实验结果。在Hinton公布算法实现和技巧后,LeCun团队的结果就轻松超过了Hinton团队的水平。

两位大师都拥有超知名的Vision,在深度学习方向上坚持三十年。但是他们Vision的差别以及以此带来的信念差别使得Insight的差别(是否追求更深刻见解)在当时可能是巨大的,对深度学习算法发挥的突破条件包括训练数据规模、模型正则化实现、activation function选取、GPU计算等的理解还有显著差异。这些在当时,原理还不清楚时,可能完全是凭着Hinton(包括那一期超强的博士生)的直觉。这种Insight的差距,使得LeCun团队已知所用算法框架和目标性能但未知关键实现时,也不能重现结果。但之后,LeCun团队拥有更好的Execution(大规模系统性调优),能在短时间内算法性能超过。这种最牛高手间信念的微妙差异,到底来源于什么,值得深思。

为什么Vision很重要?就像雷达,对别人来说是盲区,Vision让你看见,看见所以相信,相信所以平静。不仅以此获得战略优势,还有定力,排除诱惑和干扰。

Vision如何辨别呢?非常难,甚至几乎不可能,只能由同样有Vision的人欣赏。就像taste难以打分一样,只能由同样有taste的人欣赏。Vision带你看到的,就是99%的专家同行都看不到、不相信的。所以,伟大往往和误解相伴。LeCun在深度学习被实际测试数据验证前,也很难被美国主流学术圈认可,甚至发表优质会议都不是简单的事,可如今,几乎所有的论文都要贴上深度学习的标签。

但是判断过滤没有Vision的团队,倒是有迹可循。一般来说,无论学术还是创业,伟大的突破,都需要多年前后一致的投入和深耕。隔年换领域或者什么模式都在做的(垂直、平台等),归类为没有Vision应该没什么问题。

有了VIE的拆解,我认为,AI新时代的壁垒只有人,特出质的人。领军人物对AI技术和商业边界的未来分布判断无法替代,决定AI发展基本要素(算法、算力、数据和场景)的所需程度和权重。拥有优质Execution和Insight的团队,最知道对算法有效的数据在哪、如何标注使用。拥有优质Insight和Vision的团队,最早知道技术的突破带来较具商业价值的场景在哪以及何时到来。

AI未来:没有历史可以借鉴,也没有保障能够预测

谈了AI发展,技术如何解构,谈谈AI的未来。基于深度学习的AI新时代,大大不同于30年历史上的AI,这是被各种应用、在实际场景、大规模数据验证过性能的技术,而不只是理论或概念。尽管过去5年的发展,对得起人们的期待,今天,还有不少人担心新AI像过去一样很快会退潮。但我们认为,AI新时代只是开始。我从新AI的三个特性简要阐述:

1、AI是全新的维度。这是最重要的,决定AI到底是多大的事。

AI技术如何创新发展,如何变革商业,没有历史可以借鉴,也没有保障能准确判断。AI不仅仅是一个技术,AI突破还能突破所有技术包括人机交互、搜索、机器人、芯片计算、医学、制药等科学领域的几乎所有学科。

2、AI的发展速度快、跳跃性强

从S曲线中,可以看到过去5年,AI的发展及其迅猛,单门类(人脸识别)算法有了万倍的增长。但我对未来更加憧憬,即S曲线中2018年之后的曲线有多陡。AI发展带来的多维度技术和各场景深度结合、叠加会带来更有冲击力的体验。从多技术维度来说,从视觉,到听觉、语义理解、运动控制会在之后几年都会快速突破;和芯片结合,端智能渗透到与用户的最后30公分的交互体验,从Internet Of Things向Internet Of Intelligence跨越,让智能无处不在。

3、AI领先一步,会带来巨大势能

在S曲线中,处在不同位置的团队,优势不只是横轴时间的差距,而是技术领先带来的累积效应(曲线积分)以及更多元(多条AI技术曲线)AI技术的叠加,这使得AI能有跨行业的摧毁性。不仅仅决定某个行业,首先名和第二名的差距或位置关系,还能使得AI领先的行业的掌舵者撬动AI意识落后的行业。

AI未来,很难相比;因为看见,所以相信。

推广

特别声明:以上内容(如有图片或视频亦包括在内)均为站长传媒平台用户上传并发布,本平台仅提供信息存储服务,对本页面内容所引致的错误、不确或遗漏,概不负任何法律责任,相关信息仅供参考。站长之家将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。任何单位或个人认为本页面内容可能涉嫌侵犯其知识产权或存在不实内容时,可及时向站长之家提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明(点击查看反馈联系地址)。本网站在收到上述法律文件后,将会依法依规核实信息,沟通删除相关内容或断开相关链接。

  • 相关推荐
  • 科技撞上命理,年轻人为何钟爱AI算命?

    在2025年的社交媒体,DeepSeek的爆火带动了AI产业。AI算命在网络上风靡,特别是在年轻人群体中,已经成为一种新型社交话题。这场科技与命理的碰撞,最终揭示的或许不是未来的脚步是一代人在现实挤压下寻找出口的短暂集体叙事。

  • 字节AI加速文生技术新突破,GOOG/微美全息引领开源大模型释放科技势能

    字节跳动发布豆包1.5深度思考模型,升级文生图能力。该模型在专业领域和通用任务中表现突出,采用MoE架构,总参数量200B,激活参数20B,推理成本优势显著。同时,其图像生成模型Seedream 3.0性能追平GPT-4o等顶尖模型。全球AI产业加速发展,开源模型降低技术门槛,推动商业化落地。微美全息等企业构建开放AI生态,DeepSeek等公司通过开源策略促进技术普惠。行业迎来"开源AI+"新阶段,企业需把握机遇应对挑战。

  • 再获权威认可!数势科技上榜IDC中国AI Agent应用市场全景报告

    近日,国际数据公司(IDC)发布的《IDC Market Glance:中国AI Agent应用市场概览,1Q25》(Doc#CHC53057625, 2025 年 3 月)研究报告中,数势科技凭借在企业级智能体应用领域的技术突破,成功入围"数据分析"细分领域代表厂商,成为该赛道智能化转型的标杆企业。数势科技首发企业级决策分析智能体平台SwiftAgent数势科技SwiftAgent 作为基于DeepSeek及行业先进大模型构建的企业级智能决策分�

  • 科技赋能住宅升级,华发股份以责任筑就绿色未来

    在房地产行业深度变革、加速转型升级的关键时期,珠海华发实业股份有限公司凭借前瞻性的战略布局和扎实的实践举措,成功塑造行业新典范。其2024年成绩亮眼:全口径销售额达1054.44亿元,稳居行业TOP10;商业运营和物业服务等多元业务板块营收增长显著。华发股份将继续秉持“品质中国匠心筑家”的品牌理念,以科技创新为引领,以绿色发展为导向,以社会责任为己任,不断满足人民群众对美好生活的向往,为构建房地产发展新模式贡献华发力量,让更多人享受到“好房子”带来的幸福生活。

  • 黄渤称未来电影应与AI共生 而非简单抗拒或替代

    4月28日,演员黄渤在青岛"中国电影新展望"活动中谈及AI技术在影视行业的应用。他认为AI无法完全替代人类创造力,关键是如何实现技术与艺术的和谐共生。黄渤强调电影从业者应以开放态度拥抱技术发展,而非简单抗拒或替代。他指出当前行业面临的核心问题是如何平衡AI应用与艺术创作的关系,建议通过积极适应来应对技术变革。

  • 时空AI专家路新江:用创新时间序列编织智慧未来

    文章介绍了时空AI技术在智慧城市建设中的创新应用。通过分析历史交通数据,AI能提前15分钟预测主干道拥堵节点,并与智能信号灯协同优化通行效率;在地质监测站,毫米级土壤位移数据被转化为时间序列,AI模型能提前40分钟预警滑坡灾害;在城市规划方面,AI结合人口迁徙和卫星数据,可模拟20年后城区扩展形态。中国学者路新江提出创新性D3VAE框架,结合能量模型和变分自编码器,首创"生成式时序预测"模式,显著提升预测性能。他还开发了基于大语言模型的Table-to-Text方法,推动结构化数据处理。这些技术已应用于雄安新区规划、风力发电预测等多个领域,为城市数字化转型提供重要支撑。

  • 飙脏话、性暗示……科技巨头开始利用“成人AI”赚钱了

    “我想要你!但我得知道你是否已经准备好了。” 这是一款人工智能(AI)聊天机器人对一名自称 14 岁的用户所说的话……

  • 物证婚、AI誓词、区块链份子钱——Soul里藏着婚礼的未来

    Soul的“国风婚礼策划”群聊派对依然热闹。95后女生小杨正和天南地北的陌生人测试虚拟婚礼流程——她设计的“宋制汉婚”要用AI生成专属背景音乐,让宠物狗担任证婚人要把剪纸艺术投影到元宇宙场景里。当报告显示29.7%的Z世代正在策划“永不结束的线上婚礼”时,我们或许该重新理解“人生大事”的定义:那些关于爱与连接的实验,本就不该被限定在某个酒店宴会厅或人生阶段。

  • 天悦康康AI智能健康指环:开创未来式健康管理

    高压力、焦虑、失眠、慢性疲劳......现代性健康危机正成为全球性挑战,健康管理的重要性愈发凸显。世界卫生组织数据显示,全球近80%的疾病与不良生活习惯及健康管理缺失直接相关科学的健康监测可将慢性病风险降低30%以上。当科技真正服务于人的本质需求,健康管理便不再是刻意为之的负担是化为润物无声的生活节律。

  • 马上消金:金融科技智能化与安全化并重的未来趋势

    近日,国际知名咨询机构普华永道发布《 2025 全球八大金融科技趋势:专利视角》报告,深入剖析了全球金融科技的发展趋势。报告指出,在全球新一轮科技革命和产业变革的浪潮下,金融科技已成为全球数字产业发展的核心驱动力,其创新正迈入“智能”与“安全”并重的新时代。报告对全球金融机构的专利申请量进行了盘点和分析。数据显示,中国在全球金融科技专利申�