首页 > 业界 > 关键词  > AI监管最新资讯  > 正文

美国​参议院公布AI监管路线图 呼吁每年投320亿美元

2024-05-16 10:52 · 稿源:站长之家

划重点:

🔸 参议院 AI 工作组公布了一份 AI 监管路线图,呼吁每年至少投入320亿美元用于非国防 AI 创新。

🔸 路线图重点指导参议院各委员会在 AI 立法方面的工作重点,包括 AI 人才培训、处理 AI 生成内容、保护隐私信息和版权内容、减少 AI 的能源消耗等。

🔸 路线图没有提出具体的立法法案,而是为参议院委员会在 AI 监管方面提供了指导。

站长之家(ChinaZ.com) 5月16日 消息:美国四位顶级参议员于周三公布了一份关于人工智能监管的提案路线图,呼吁每年至少投入320亿美元用于非国防人工智能创新。AI 工作组的成员包括参议院多数党领袖查克・舒默(D-NY),迈克・朗兹(R-SD),马丁・海因里希(D-NM)和托德・扬(R-IN),在举办了几个 AI 洞察论坛数月后,终于发布了这份备受期待的提案。这些论坛邀请了 AI 专家,包括 OpenAI 首席执行官山姆・阿尔特曼和谷歌首席执行官桑达尔・皮查伊,以及学术界、劳工和公民权利领袖

美国硅谷

这份路线图并非具体的可迅速通过的立法法案。在这份20页的报告中,工作组列出了参议院相关委员会在 AI 方面应该关注的重点领域。其中包括:AI 人才培训;在特定领域处理 AI 生成的内容,包括儿童性虐待材料(CSAM)和选举内容;保护个人信息和版权内容免受 AI 系统侵害;减少 AI 的能源消耗。工作组表示,这份报告并非详尽无遗的选择清单。

舒默表示,这份路线图旨在引导参议院各委员会在制定监管政策时发挥主导用,并非旨在制定一揽子涵盖所有 AI 领域的大型法律。一些立法者在等不及路线图的情况下已经提出了自己与 AI 相关的提案。例如,参议院规则委员会在周三推进了一系列与选举有关的 AI 法案。但由于 AI 涉及到许多不同领域,并且对于适当的监管水平和种类有许多不同的观点,尤其是在选举年份,尚不清楚这些提案将以多快的速度成为法律。

工作组鼓励其他立法者与参议院拨款委员会合作,根据国家人工智能安全委员会(CAI)提出的建议将 AI 资金提高到预定水平。他们表示,这些资金应该用于府和国家标准与技术研究所(NIST)的 AI 和半导体研发。这份路线图并没有明确要所有未来的 AI 系统在向公众销售之前都必须进行安全评估,而是要求制定一个框架来何时需要进行评估。这与一些提案法案有所不同,后者要求立即对所有当前和未来的 AI 型进行安全评估。参议员们也没有立即要求对现有的版权规定进行彻底改革,这是公司和版权持有者在法庭上争论的问题。

相反,他们要求决策者考虑是否需要围绕透明度内容来源、形象保护和版权制定新的立法。Adobe 公司的总法律顾问兼首席信任官达纳・劳表示,参加了 AI 洞察论坛的他在一份声明中表示,这份政策路线图是一个鼓舞人心的开始,为 “政府需要为更广泛的创意生态系统提供保护,包括对视觉艺术家及其对格的关注”。

然而,其他组织对舒默的路线图持更为批评的态度,许多人对监管技术成本提出担忧。AI Now 政策研究组织的联合执行董事安巴・卡克在报告发布后发表一份声明,表示这份报告的 “长长的提案清单并不能替代可强制执行的法律”。卡克还对提案的庞大税收支提出异议,称其 “可能进一步将权力集中回 AI 基础设施提供商,并复制产业激励措施 —— 我们将寻求确保这种情况不会发生的保证。”

举报

  • 相关推荐
  • 大家在看
  • ChattyUI:你的私人AI聊天工具,运行在浏览器中。

    Chatty是一个利用WebGPU技术在浏览器中本地且私密地运行大型语言模型(LLMs)的私人AI聊天工具。它提供了丰富的浏览器内AI体验,包括本地数据处理、离线使用、聊天历史管理、支持开源模型、响应式设计、直观UI、Markdown和代码高亮显示、文件聊天、自定义内存支持、导出聊天记录、语音输入支持、重新生成响应以及明暗模式切换等功能。

  • AsyncDiff:异步去噪并行化扩散模型

    AsyncDiff 是一种用于并行化扩散模型的异步去噪加速方案,它通过将噪声预测模型分割成多个组件并分配到不同的设备上,实现了模型的并行处理。这种方法显著减少了推理延迟,同时对生成质量的影响很小。AsyncDiff 支持多种扩散模型,包括 Stable Diffusion 2.1、Stable Diffusion 1.5、Stable Diffusion x4 Upscaler、Stable Diffusion XL 1.0、ControlNet、Stable Video Diffusion 和 AnimateDiff。

  • MacAIverse:macOS风格的开源React桌面环境

    MacAIverse是一个完全由AI生成代码,使用React构建的macOS风格的开源桌面环境。该项目由Claude AI助手初始创建,现在开放给其他Claude实例或其他开发者贡献新的应用。它遵循macOS设计原则,保持与整体桌面环境的一致性,并通过Tailwind CSS和framer-motion库实现流畅的动画和响应式布局。

  • EvTexture:视频超分辨率纹理增强技术

    EvTexture是一种基于事件的视觉驱动的视频超分辨率(VSR)技术,它利用事件信号中的高频细节来更好地恢复VSR中的纹理区域。该技术首次提出使用事件信号进行纹理增强,通过迭代纹理增强模块逐步探索高时间分辨率的事件信息,实现纹理区域的逐步细化,从而获得更准确、丰富的高分辨率细节。在四个数据集上,EvTexture达到了最先进的性能,特别是在Vid4数据集上,与最近的基于事件的方法相比,可以获得高达4.67dB的增益。

  • Telegraf:开源服务器代理,用于收集和报告指标

    Telegraf是一个开源的服务器代理,用于收集和发送来自数据库、系统和IoT传感器的所有指标和事件。它使用Go语言编写,编译成一个单一的二进制文件,无需外部依赖,占用的内存非常小。Telegraf拥有300多个插件,由社区成员编写,覆盖了云服务、应用程序、IoT传感器等多种数据源。它支持灵活的解析和序列化,适用于多种数据格式,如JSON、CSV、Graphite,并能将数据序列化为InfluxDB行协议和Prometheus等。Telegraf还具有稳健的交付保证,包括流量回压、调度器、时钟漂移调整、全流支持等。此外,Telegraf的自定义构建器允许用户选择特定插件包含在Telegraf二进制文件中,适合在资源受限的设备上使用。

  • iA Writer:纯净写作体验,专注流状态

    iA Writer是一款专注于写作的应用程序,旨在提供纯净的写作环境,帮助用户专注于内容创作。它通过简洁的界面设计和强大的功能,如语法检查、文本聚焦等,帮助用户提高写作效率和质量。iA Writer背后的设计理念是利用人工智能技术,让用户在写作时思考得更多,而不是更少,从而提升写作体验。

  • Groqnotes:使用Groq、Whisper和Llama3从音频生成有组织的笔记。

    Groqnotes是一个基于Streamlit的应用程序,它通过迭代解析和生成从转录的音频讲座中提取的笔记来构建结构化的讲座笔记。该应用程序混合使用了Llama3-8b和Llama3-70b模型,利用较大的模型生成笔记结构,较快的模型创建内容。Groqnotes的主要优点包括快速转录音频和生成文本,以及通过策略性地在两种模型之间切换来平衡速度和质量。此外,它还支持Markdown样式,可以在Streamlit应用程序中创建美观的笔记,包括表格和代码,并允许用户下载包含全部笔记内容的文本或PDF文件。

  • june:本地语音聊天机器人,保护隐私,无需联网。

    june是一个结合了Ollama、Hugging Face Transformers和Coqui TTS Toolkit的本地语音聊天机器人。它提供了一种灵活、注重隐私的解决方案,可以在本地机器上进行语音辅助交互,确保没有数据被发送到外部服务器。产品的主要优点包括无需联网即可使用、保护用户隐私、支持多种交互模式等。

  • Meilisearch:极速、高度相关的搜索引擎

    Meilisearch是一个灵活且强大的用户为中心的搜索引擎,可以轻松添加到任何网站或应用程序中。它以其极速的搜索响应(小于50毫秒)和即插即用的特性(智能预设,零配置启动)著称。Meilisearch还提供了先进的全文搜索引擎,具有出色的相关性,适用于各种用例。此外,它是一个开源项目,拥有一个友好且快速增长的社区。

  • nerve:无需编写代码即可创建智能代理的LLM工具。

    Nerve是一个可以创建具有状态的代理的LLM工具,用户无需编写代码即可定义和执行复杂任务。它通过动态更新系统提示和在多个推理过程中保持状态,使代理能够规划和逐步执行完成任务所需的操作。Nerve支持任何通过ollama、groq或OpenAI API可访问的模型,具有高度的灵活性和效率,同时注重内存安全。

  • Tap4 AI Crawler:开源的网页爬虫,支持AI技术目录更新和网站摘要。

    Tap4 AI Crawler 是由 tap4.ai 开源的网页爬虫,能够将网站转换为包含LLM的摘要信息。它具备强大的网页抓取、爬取和数据提取能力,以及网页截图功能。基于Python构建,轻量级,易于维护,适合对AI工具目录感兴趣的个人开发者以及对Python感兴趣的学习者。

  • Local III:本地机器智能的探索之旅

    Local III是一个由超过100名来自世界各地的开发者共同开发的更新,它提供了易于使用的本地模型浏览器,深度集成了推理引擎如Ollama,为开放模型如Llama3、Moondream和Codestral定制了配置文件,并提供了一套设置,使离线代码解释更加可靠。Local III还引入了一个免费的、托管的、可选的模型通过解释器--model i。与i模型的对话将用于训练我们自己的开源计算机控制语言模型。

  • 4M:多模态和多任务模型训练框架

    4M是一个用于训练多模态和多任务模型的框架,能够处理多种视觉任务,并且能够进行多模态条件生成。该模型通过实验分析展示了其在视觉任务上的通用性和可扩展性,为多模态学习在视觉和其他领域的进一步探索奠定了基础。

  • LLM101n:构建一个会讲故事的人工智能大型语言模型。

    LLM101n是一个开源课程,旨在教授如何从头开始构建一个能讲故事的人工智能大型语言模型(LLM)。课程内容涵盖了从基础到高级的多个方面,包括语言模型、机器学习、深度学习框架等,适合希望深入理解AI和LLM的编程人员和研究人员。

  • Ohai.ai:智能家庭助理,简化家务管理

    Ohai是由Care.com创始人Sheila Lirio Marcelo带领的团队创建的智能家庭助理,旨在减轻家庭事务负责人的心理负担。它通过文本消息与用户互动,帮助管理家庭日程、待办事项、协调家庭和看护者之间的沟通,并跟踪学校邮件等。

  • RecruiterCloud:一站式智能招聘与人才搜索工具

    RecruiterCloud是一个为初创公司设计的一站式招聘和人才搜索工具。它专注于速度、效率和易用性,提供智能搜索和人才挖掘功能。该平台拥有超过1100万美国工程师和数据科学家的数据库,通过先进的筛选和自定义高亮功能,帮助用户快速找到合适的候选人。此外,RecruiterCloud还提供一键式外联自动化、与现有ATS无缝同步等特性,简化招聘流程,缩短招聘时间。

  • Playmaker Document AI:自动化文档工作流程,释放AI的力量。

    Playmaker Document AI是一款旨在通过人工智能技术自动化文档处理流程的产品。它通过智能识别和提取文档中的数据,帮助用户消除手动工作,简化基于文档的流程。产品背景信息显示,Playmaker Document AI由Playmaker Software Ltd.开发,团队来自伦敦、爱丁堡、伊斯坦布尔和新德里。产品的主要优点包括数据的安全性、支持多种文档类型、以及能够与300多个集成无缝对接。

  • Spiral:自动化写作和创意任务的智能助手

    Spiral是一个旨在自动化重复写作、思考和创意任务的在线工具。它通过用户的训练示例来学习用户的语音、语调和风格,进而生成符合用户要求的输出内容。Spiral的主要优点包括:快速启动、个性化输出、团队协作以及持续优化。产品背景信息显示,Spiral受到了多位行业人士的好评,他们认为Spiral能显著提高工作效率,并且输出内容自然,不显生硬。Spiral提供订阅服务,价格为1美元试用两周,之后为每月20美元或每年200美元。

  • Future You:未来自我模拟,人生规划助手

    Future You是一个在线模拟工具,旨在帮助用户通过一系列问题和模拟,反思和设想自己未来的生活。用户通过回答关于现在的自己、理想生活、职业规划等问题,与AI生成的未来自我进行互动,从而获得对未来的深刻洞察和规划。

  • Rockset:高效的混合搜索和实时分析数据库

    Rockset是一个为大规模数据提供高效搜索和实时分析的数据库平台。它支持向量、文本、地理空间和JSON数据的索引,能够实现混合搜索架构,并通过流式数据摄入和高QPS工作负载来测量端到端延迟。Rockset的主要优点包括实时索引、毫秒级SQL查询、快速开发新功能、降低计算和存储成本,以及无需ETL、去规范化、管理分片、索引或集群的灵活性。

今日大家都在搜的词: