首页 > 传媒 > 关键词  > 海外网红营销最新资讯  > 正文

WotoKOL旗下WotoHub海外红人智能营销云搜索全面升级

2024-03-29 13:39 · 稿源: 站长之家用户

现如今海外网红营销赛道,已赫然成为商业领域中一股不容忽视的力量。就在在企业积极拓展海外市场疆界,寻求全球化战略布局过程中,有两个问题常常困扰大家:

一方面,卖家尝试通过细微的标签找寻意向红人时,却因标签过多而陷入搜索结果局限的窘境;

另一方面,若选择放宽关键词范围,却又会导致搜索结果庞杂不比较准确,匹配意向红人如大海捞针。

凭借着其前沿的技术实力和对市场需求的把握,WotoHub海外红人智能营销云搜索功能便进行了全面升级,力求在标签细分的深度与搜索范围的广度之间找到最 佳平衡点,让用户自行定制个人搜索需求,从而有效、准确地定位到较具价值的海外红人资源。

以下为此次重点更新的内容:

AI搜索范围扩展

拓宽资源搜索来源、支持关键词交并集、模糊/准确搜索任选

筛选条件精细化

频道、业务、受众、甚至TikTok Shop各项数据全方位自定义

视频数据可视化

首页直观展示红人带货视频的关键数据,核心指标迅速洞悉

AI搜索范围扩展

搜索来源拓宽

对比过去,WotoHub检索红人的范围涵盖视频内容、红人简介、带货商品多个方面,即可以单一渠道链接,又支持多渠道全选,大大增强了用户搜搜结果的全面性和实用性。

来源:WotoHub海外红人智能营销云

关键词交并集

新版的AI搜索引擎内还支持关键词交集或并集搜索,这意味着用户可以根据自己需要,灵活指定搜索条件,如同时满足多个标签或者只要求其中任意一个标签出现即可。这种精细化搜索极大地提升了搜索的准确度和个性化程度。

搜索模式任选

模糊搜索允许用户输入部分关键词,WotoHub能够智能理解用户的搜索意图,并返回近义词相关的红人列表,提高了搜索的包容性与便利性。

而准确搜索则是在用户提供确切关键词时,系统能准确找到完全匹配的信息,尤其适合那些对搜索目标有明确要求的情况。

筛选条件精细化

另外,更新后的WotoHub整合筛选类目,新增视频发布时间、受众数据的筛选,新版则能支持用户从频道数据、业务数据、受众数据、甚至是TikTok Shop数据,全方位让用户自定义筛选条件,使得搜索结果更加贴近用户需求。

来源:WotoHub海外红人智能营销云

自从WotoHub一早纳入TikTok Shop数据后,用户可以直接洞察红人带货能力,这对于TikTok小店卖家而言是一大利器,更便于大家依据实时数据来制定更为准确的营销策略。

视频数据可视化

在AI搜索引擎的优化上,WotoHub更加重视数据驱动决策,所以首页直观展示了红人带货视频的关键数据,包括发布时间、观看量、点赞数、评论数在内的各项核心指标,使用户能够在短时间内洞悉红人的实际带货行动力和转化效能。

来源:WotoHub海外红人智能营销云

同时配合在红人卡片直接查看“更多视频”功能,让用户在搜索页即可完成对红人频道的整体判断,极大地提升了各用户在寻找带货红人时的决策效率。

来源:WotoHub海外红人智能营销云

总之,本次WotoHub的更新着重于不断强化搜索效率,深化数据挖掘的比较准确性和覆盖面,同时注重提升用户交互体验,有力支持各商家做出更具洞察力的商业决策。WotoHub坚守在技术创新前沿,依靠独到的战略远见与先进的算法力量,使用户能够更加广泛且有效地接触全球范围内的高品质带货红人,从而为广泛的用户群打造卓越的产品应用体验,并最 大化服务价值的输出。

关于WotoKOL卧兔网络

WotoKOL卧兔是一家专为品牌出海赋能的企业,在海外红人营销领域影响深远:

三大核心服务:定制化品牌营销、WotoHub海外红人智能营销云、TikTok美区达人营销服务覆盖电商、APP、游戏等跨境全品类,其中WotoHub系统用户量超50000家

深入本土运营:公司100多家战略合作根据地遍布全球,辐射欧美、日韩、东南亚等多个热门国家和地区

七年沉淀积累:海外活跃红人资源累计超2000万,覆盖150多个国家、200多个语种;在海外红人上,投放金额超13.1亿,且与Anker、华为、Shein等在内的28家BrandZ中国出海品牌50强企业进行深度合作,累计服务品牌超5000家

推广

特别声明:以上内容(如有图片或视频亦包括在内)均为站长传媒平台用户上传并发布,本平台仅提供信息存储服务,对本页面内容所引致的错误、不确或遗漏,概不负任何法律责任,相关信息仅供参考。站长之家将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。任何单位或个人认为本页面内容可能涉嫌侵犯其知识产权或存在不实内容时,可及时向站长之家提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明(点击查看反馈联系地址)。本网站在收到上述法律文件后,将会依法依规核实信息,沟通删除相关内容或断开相关链接。

  • 相关推荐
  • 大家在看
  • Carteisa Sonic:低延迟语音模型,生成逼真语音

    Sonic是由Carteisa团队开发的低延迟语音模型,旨在为各种设备提供逼真的语音生成能力。该模型利用了创新的状态空间模型架构,以实现高分辨率音频和视频的高效、低延迟生成。Sonic模型的延迟仅为135毫秒,是同类模型中最快的。Carteisa团队专注于优化智能的效率,使它更快、更便宜、更易于访问。Sonic模型的发布,标志着实时对话式AI和长期记忆的计算平台的初步进展,预示着未来AI在实时游戏、客户支持等领域的新体验。

  • ViViD:视频虚拟试穿技术

    ViViD是一个利用扩散模型进行视频虚拟试穿的新框架。它通过设计服装编码器提取精细的服装语义特征,并引入轻量级姿态编码器以确保时空一致性,生成逼真的视频试穿效果。ViViD收集了迄今为止规模最大、服装类型最多样化、分辨率最高的视频虚拟试穿数据集。

  • xinsir:深度学习、表示学习、细粒度分类

    xinsir (qi) 是一个关于深度学习、表示学习和细粒度分类的产品。它提供了强大的功能和技术,具有主要优点和背景信息。该产品具有多个模型可供选择。

  • 腾讯元宝:是一个多功能工具,帮助用户轻松工作和享受多彩生活。

    腾讯元宝是一款集成了多种实用工具和服务的生产力工具,旨在提高用户工作效率和生活品质。其背景信息是由腾讯公司推出,定位为全面满足用户工作和生活需求的综合性工具。腾讯元宝提供了丰富的功能和服务,包括日程管理、文件存储、社交聊天、视频会议等,用户可以在一个平台上完成各种任务。

  • GPTResearcher:AI助力的快速洞察和全面研究助手

    GPT Researcher是一个领先的自主研究代理,专为多代理框架设计,提供实时、准确和事实性的结果。它能够简化数据收集,通过一个函数调用提供可信赖、聚合和策划的结果。它支持超过100种不同的大型语言模型(LLMs),并且可以与任何搜索引擎协作,从Google到DuckDuckGo。用户可以轻松搜索本地文档和文件,并生成超过2000字的长篇报告,支持多种格式的导出,如PDF、Word、Markdown、JSON和CSV。

  • DenserRetriever:先进的AI检索器,用于RAG。

    DenserRetriever是一个开源的AI检索模型,专为RAG(Retrieval-Augmented Generation)设计,利用社区协作的力量,采用XGBoost机器学习技术有效结合异构检索器,旨在满足大型企业的需求,并且易于部署,支持docker快速启动。它在MTEB检索基准测试中达到了最先进的准确性,并且Hugging Face排行榜上也有其身影。

  • Groqbook:使用Groq和Llama3快速生成整本书

    Groqbook是一个基于Streamlit的应用程序,它利用Llama3在Groq上从一行提示快速构建书籍。它适用于非小说类书籍的创作,并能在几秒钟内生成每一章节。该应用程序混合使用Llama3-8b和Llama3-70b模型,利用较大的模型生成结构,较小的模型创造内容。目前,模型仅使用章节标题的上下文来生成章节内容。未来,这将扩展到书籍的完整上下文,以允许Groqbook生成高质量的小说书籍。

  • MusePose:虚拟人物生成的图像到视频框架

    MusePose是由腾讯音乐娱乐的Lyra Lab开发的一款图像到视频的生成框架,旨在通过姿势控制信号生成虚拟人物的视频。它是Muse开源系列的最后一个构建块,与MuseV和MuseTalk一起,旨在推动社区向生成具有全身运动和交互能力的虚拟人物的愿景迈进。MusePose基于扩散模型和姿势引导,能够生成参考图像中人物的舞蹈视频,并且结果质量超越了当前几乎所有同一主题的开源模型。

  • Codestral-22B-v0.1:一款支持80+编程语言的AI代码生成模型

    Codestral-22B-v0.1是由Mistral AI Team开发的大型语言模型,它经过了80多种编程语言的训练,包括Python、Java、C、C++、JavaScript和Bash等。该模型能够根据指令生成代码,或对代码片段进行解释、重构等。它还支持Fill in the Middle (FIM)功能,用于预测代码中的中间部分,特别适合软件开发工具的插件使用,如VS Code。该模型目前没有内容审查机制,但开发团队正在寻求社区合作,以实现在需要内容审查的环境中部署。

  • Fryderyk:AI辅助的音乐创作伙伴

    Fryderyk是一个集成了AI助手的音乐制作网页应用程序,它提供了一个浏览器内的音乐创作环境,支持即插即用,连接麦克风或任何MIDI乐器。用户可以访问广泛的虚拟乐器库,应用混响、失真、延迟等效果和混合工具,进行音频编辑、录制和编辑音频。Fryderyk还提供云存储功能,项目自动保存并同步至所有设备。它的内置生成性AI能够扩展用户的想法或在用户遇到创作瓶颈时提供新的想法。

  • Codestral:是为代码生成任务设计的AI模型。

    Codestral是Mistral AI团队推出的首个代码生成AI模型,它能够通过共享指令和完成API端点帮助开发者编写和与代码交互。它在80多种编程语言上进行了训练,包括Python、Java、C、C++、JavaScript和Bash等,能够完成编码功能、编写测试和使用中间填充机制完成部分代码。Codestral在性能上设立了新的标准,它拥有32k的上下文窗口,比竞争对手的4k、8k或16k更大,从而在RepoBench上超越了所有其他模型。此外,它还提供了专用的API端点codestral.mistral.ai,允许用户在IDE中使用Instruct或Fill-In-the-Middle路由,并且提供了8周的免费beta期。Codestral还集成到了LlamaIndex和LangChain等应用框架中,以及VSCode和JetBrains环境中,使得开发者可以在这些环境中生成和与代码进行交互。

  • PCM:一种新的文本条件高分辨率生成模型

    Phased Consistency Model(PCM)是一种新型的生成模型,旨在解决Latent Consistency Model(LCM)在文本条件高分辨率生成中的局限性。PCM通过创新的策略在训练和推理阶段提高了生成质量,并通过广泛的实验验证了其在不同步骤(1步、2步、4步、8步、16步)下与Stable Diffusion和Stable Diffusion XL基础模型的结合效果。

  • Qaiz:创建和参与多玩家知识问答游戏

    Qaiz是一个在线平台,利用AI技术快速生成各种主题的互动式问答游戏,让用户可以与朋友和家人实时竞争,同时跟踪分数并享受实时评论。它提供了一个有趣的方式来测试和分享知识,同时具有社交和娱乐的双重属性。

  • Trip Tunes:自动生成适合旅行的个性化音乐播放列表

    Trip Tunes是一款为旅行者设计的应用程序,能够自动创建与旅行氛围相匹配的音乐播放列表。用户只需输入旅行的基本信息和音乐偏好,应用程序就会利用算法精心挑选出符合当地音乐场景和旅行风格的曲目。该应用特别适合那些希望在旅途中享受个性化音乐体验的用户。

  • Backseat AI:与Tyler1一起在《英雄联盟》中获得专业级实时指导

    Backseat AI是由Tyler1联合创立的应用程序,它通过先进的AI技术为《英雄联盟》玩家提供实时的指导、洞察和评论。它旨在通过专业级的游戏分析帮助玩家提高游戏表现,同时保持电脑性能不受影响。Backseat AI是免费的,玩家可以选择升级到高级订阅以获得无广告体验和额外功能。

  • Tonic Textual:安全数据湖,为生成式AI开发提供数据

    Tonic Textual 是全球首个为大型语言模型(LLMs)设计的Secure Data Lakehouse。它通过自动化流程,帮助企业从云存储中提取、治理、丰富和部署非结构化数据,以支持生成式AI的发展。该产品强调数据隐私保护,利用其专有的命名实体识别(NER)模型自动检测和去标识化敏感信息,同时通过数据合成保持数据的语义真实性。它支持多种数据格式,并通过AWS Marketplace、Google Cloud Marketplace和Snowflake Marketplace提供服务。

  • Outtloud:AI语音助手,将文档转换为自然语音

    Outtloud是一款AI语音助手,可以将用户文档或文本转换成自然流畅的高保真AI语音。它支持超过10种语言和口音,提供100多种AI高级人声。用户可以以高达4倍的速度听书,节省阅读时间,同时在驾驶、通勤、锻炼等任何时间任何地点进行学习。它还具备添加笔记和书签的功能,支持在焦点模式下高亮显示正在播放的段落,以便用户跟随阅读。

  • llama3v:基于llama3 8B的SOTA视觉模型

    llama3v是一个基于Llama3 8B和siglip-so400m的SOTA(State of the Art,即最先进技术)视觉模型。它是一个开源的VLLM(视觉语言多模态学习模型),在Huggingface上提供模型权重,支持快速本地推理,并发布了推理代码。该模型结合了图像识别和文本生成,通过添加投影层将图像特征映射到LLaMA嵌入空间,以提高模型对图像的理解能力。

  • Open LLM Leaderboard:开放的大型语言模型排行榜

    Open LLM Leaderboard是一个由Hugging Face提供的空间,旨在展示和比较各种大型语言模型的性能。它为开发者、研究人员和企业提供了一个平台,可以查看不同模型在特定任务上的表现,从而帮助用户选择最适合自己需求的模型。

  • OpenCompass Multi-modal Leaderboard:实时更新的多模态模型性能排行榜

    OpenCompass多模态排行榜是一个实时更新的平台,用于评估和排名不同的多模态模型(VLMs)。它通过8个多模态基准测试来计算模型的平均得分,并提供详细的性能数据。该平台仅包含开源的VLMs或公开可用的APIs,旨在帮助研究人员和开发者了解当前多模态模型的最新进展和性能表现。

今日大家都在搜的词: