首页 > 业界 > 关键词  > 正文

雷军给武大捐13亿:不主张攀比 每一份捐款分量都一样重

2023-11-29 14:28 · 稿源:站长之家用户

武汉大学迎来了 130 周年校庆,而在这个特殊的日子里,雷军个人向母校捐赠了 13 亿元人民币,成为武大建校以来单笔最大捐赠额,也是全国高校收到的最大一笔校友个人现金捐赠。这次捐赠主要支持三个方向:数理化文史哲六大学科基础研究、计算机领域科技创新、以及大学生培养。

在捐赠致辞中,雷军表达了对母校的深厚感情:“武大教给我知识,让我学会了学习的方法,指导我走上了科技探索的毕生道路,给了我一生最重要的财富。” 雷军先前曾向武大捐赠设立武汉大学“腾飞奖学金”、“雷军奖学金”、“雷军科技楼”等多个项目,捐赠总额达1. 3 亿元。今年 6 月,雷军科技楼落成,并在 8 月将奖学金翻倍升级到 2000 万元,用于激励拔尖创新人才培养。

然而,雷军强调个人捐款并不主张攀比。他指出,此次活动有许多校友纷纷捐款,而每一份捐款都是对母校深深的爱的体现,无论数额大小都同等重要。这一立场显示了雷军对于捐赠的真挚动机,强调爱心和对母校的感激之情。

雷军在 1987 年毕业于原沔阳中学,同年考入武汉大学计算机系,成为该校的一名学子。他的捐赠不仅是对母校的回馈,更是对教育事业和科技创新的持续支持。今年的 13 亿元捐款刷新了武汉大学捐赠纪录,也体现了雷军一直以来对教育和科技的积极贡献。

举报

  • 相关推荐
  • 大家在看
  • fastc:轻量级文本分类工具,使用大型语言模型嵌入。

    fastc是一个基于大型语言模型嵌入的简单且轻量级的文本分类工具。它专注于CPU执行,使用高效的模型如deepset/tinyroberta-6l-768d生成嵌入。通过余弦相似度分类代替微调,实现文本分类。它还可以在不增加额外开销的情况下,使用相同的模型运行多个分类器。

  • MeshAnything:3D资产的自动生成工具

    MeshAnything是一个利用自回归变换器进行艺术家级网格生成的模型,它可以将任何3D表示形式的资产转换为艺术家创建的网格(AMs),这些网格可以无缝应用于3D行业。它通过较少的面数生成网格,显著提高了存储、渲染和模拟效率,同时实现了与先前方法相当的精度。

  • HunyuanDiT-v1.1:多分辨率扩散变换器,支持中英文理解

    HunyuanDiT-v1.1是由腾讯Hunyuan团队开发的一款多分辨率扩散变换模型,它具备精细的中英文理解能力。该模型通过精心设计的变换器结构、文本编码器和位置编码,结合从头开始构建的完整数据管道,实现数据的迭代优化。HunyuanDiT-v1.1能够执行多轮多模态对话,根据上下文生成和细化图像。经过50多名专业人类评估员的全面评估,HunyuanDiT-v1.1在中文到图像生成方面与其他开源模型相比,达到了新的最先进水平。

  • UniAnimate:高效生成一致性人物视频动画的模型

    UniAnimate是一个用于人物图像动画的统一视频扩散模型框架。它通过将参考图像、姿势指导和噪声视频映射到一个共同的特征空间,以减少优化难度并确保时间上的连贯性。UniAnimate能够处理长序列,支持随机噪声输入和首帧条件输入,显著提高了生成长期视频的能力。此外,它还探索了基于状态空间模型的替代时间建模架构,以替代原始的计算密集型时间Transformer。UniAnimate在定量和定性评估中都取得了优于现有最先进技术的合成结果,并且能够通过迭代使用首帧条件策略生成高度一致的一分钟视频。

  • LVBench:长视频理解基准测试

    LVBench是一个专门设计用于长视频理解的基准测试,旨在推动多模态大型语言模型在理解数小时长视频方面的能力,这对于长期决策制定、深入电影评论和讨论、现场体育解说等实际应用至关重要。

  • Mo:通过卡片式学习,轻松掌握AI科技知识。

    Mo是一款结合超现实主义艺术和堂吉诃德理想主义精神的AI科技学习APP。它通过卡片形式,以图文、动画、视频、语音等多样化内容,使AI和科技知识的学习变得生动有趣。Mo不仅覆盖了AI的基础知识,还包含了元宇宙、大数据、大模型等前沿技术,适合各种背景的学习者,旨在打造一个个性化的学习体验。

  • 开搜AI搜索:面向大众的AI问答搜索引擎

    开搜AI问答搜索引擎是一款面向大众的、直达答案的AI问答搜索引擎,它能够帮助用户从海量的文献资料中筛选出有用的信息,提供直接、精准的答案,并且能够自动总结重点、生成大纲、思维导图并下载。

  • AI Math Notes:一个交互式绘图应用,用于数学方程的绘制和计算。

    AI Math Notes 是一个开源的交互式绘图应用程序,允许用户在画布上绘制数学方程。应用程序利用多模态大型语言模型(LLM)计算并显示结果。该应用程序使用Python开发,利用Tkinter库创建图形用户界面,使用PIL进行图像处理。灵感来源于Apple在2024年全球开发者大会(WWDC)上展示的'Math Notes'。

  • VideoTetris:文本到视频生成的创新框架

    VideoTetris是一个新颖的框架,它实现了文本到视频的生成,特别适用于处理包含多个对象或对象数量动态变化的复杂视频生成场景。该框架通过空间时间组合扩散技术,精确地遵循复杂的文本语义,并通过操作和组合去噪网络的空间和时间注意力图来实现。此外,它还引入了一种新的参考帧注意力机制,以提高自回归视频生成的一致性。VideoTetris在组合文本到视频生成方面取得了令人印象深刻的定性和定量结果。

  • Visual Sketchpad:多模态语言模型的视觉推理工具

    Visual Sketchpad 是一种为多模态大型语言模型(LLMs)提供视觉草图板和绘图工具的框架。它允许模型在进行规划和推理时,根据自己绘制的视觉工件进行操作。与以往使用文本作为推理步骤的方法不同,Visual Sketchpad 使模型能够使用线条、框、标记等更接近人类绘图方式的元素进行绘图,从而更好地促进推理。此外,它还可以在绘图过程中使用专家视觉模型,例如使用目标检测模型绘制边界框,或使用分割模型绘制掩码,以进一步提高视觉感知和推理能力。

  • GoMate:基于RAG框架的可靠输入和可信输出系统

    GoMate是一个基于Retrieval-Augmented Generation (RAG)框架的模型,专注于提供可靠输入和可信输出。它通过结合检索和生成技术,提高信息检索和文本生成的准确性和可靠性。GoMate适用于需要高效、准确信息处理的领域,如自然语言处理、知识问答等。

  • SD3-Controlnet-Canny:一种用于生成图像的深度学习模型。

    SD3-Controlnet-Canny 是一种基于深度学习的图像生成模型,它能够根据用户提供的文本提示生成具有特定风格的图像。该模型利用控制网络技术,可以更精确地控制生成图像的细节和风格,从而提高图像生成的质量和多样性。

  • Tencent EMMA:多模态文本到图像生成模型

    EMMA是一个基于最前沿的文本到图像扩散模型ELLA构建的新型图像生成模型,能够接受多模态提示,通过创新的多模态特征连接器设计,有效整合文本和补充模态信息。该模型通过冻结原始T2I扩散模型的所有参数,并仅调整一些额外层,揭示了预训练的T2I扩散模型可以秘密接受多模态提示的有趣特性。EMMA易于适应不同的现有框架,是生成个性化和上下文感知图像甚至视频的灵活有效工具。

  • Dream Machine AI:释放AI视频创造的力量,轻松生成惊人视频

    Dream Machine是由Luma Labs开发的一款先进的人工智能模型,旨在快速从文本和图片生成高质量的、逼真的视频。这个高度可扩展且高效的变换模型直接在视频上训练,使其能够产生物理上准确、一致且充满事件的镜头。Dream Machine AI是朝着创建通用想象力引擎迈出的重要一步,使每个人都能轻松访问。它可以生成带有平滑动作、电影质量和戏剧元素的5秒视频片段,将静态快照转化为动态故事。该模型理解物理世界中人与人之间、动物和物体之间的互动,允许创建具有极佳角色一致性和准确物理的视频。此外,Dream Machine AI支持广泛的流畅、电影化和自然主义的摄像机运动,与场景的情感和内容相匹配。

  • CV Screener:简化招聘流程的CV筛选模板

    CV Screener是MindPal公司提供的一款在线AI解决方案,旨在帮助现代专业人士提高工作效率。通过4步CV筛选模板,用户可以轻松评估求职者,识别顶尖人才。产品背景信息包括MindPal公司致力于采用AI技术提升工作效率,并且产品支持结果保存、自定义数据添加、工作流程定制等功能。

  • NewRA:企业级AI聊天机器人,快速构建智能对话。

    NewRA是一个基于云端的AI聊天机器人平台,支持现代广泛使用的AI模型。它利用企业数据和信息集,在几分钟内构建AI驱动的聊天机器人。NewRA提供个性化应用,使用户能够利用现有数据和文档,增强AI驱动的决策制定和操作。NewRA的主要优点包括快速响应、定制化知识库、实时测试和调整、以及与周边系统的集成能力。

  • MDLM:一种高效的遮蔽扩散语言模型。

    Masked Diffusion Language Models (MDLM) 是一种新型的语言模型,它通过遮蔽和扩散机制来生成高质量的文本数据。MDLM 通过改进的训练方法和简化的目标函数,提高了遮蔽扩散模型的性能,使其在语言建模基准测试中达到了新的最佳状态,并接近自回归模型的困惑度。MDLM 的主要优点包括高效的采样器、支持生成任意长度的文本,以及在长程依赖和可控生成方面的优势。

  • HOI-Swap:视频编辑中的手-物交互意识

    HOI-Swap是一个基于扩散模型的视频编辑框架,专注于处理视频编辑中手与物体交互的复杂性。该模型通过自监督训练,能够在单帧中实现物体交换,并学习根据物体属性变化调整手的交互模式,如手的抓握方式。第二阶段将单帧编辑扩展到整个视频序列,通过运动对齐和视频生成,实现高质量的视频编辑。

  • InstantX:AI内容生成研究组织

    InstantX是一个专注于AI内容生成的独立研究组织,致力于文本到图像的生成技术。其研究项目包括风格保持的文本到图像生成(InstantStyle)和零样本身份保持生成(InstantID)。该组织通过GitHub社区进行项目更新和交流,推动AI在图像生成领域的应用和发展。

  • Hallo:基于扩散模型的肖像图像动画技术

    Hallo是一个由复旦大学开发的肖像图像动画技术,它利用扩散模型生成逼真且动态的肖像动画。与传统依赖参数模型的中间面部表示不同,Hallo采用端到端的扩散范式,并引入了一个分层的音频驱动视觉合成模块,以增强音频输入和视觉输出之间的对齐精度,包括嘴唇、表情和姿态运动。该技术提供了对表情和姿态多样性的自适应控制,能够更有效地实现个性化定制,适用于不同身份的人。

今日大家都在搜的词:

热文

  • 3 天
  • 7天