AI江湖里,阿里如何成为“扫地僧”?

人工智能 AI 机器人

声明:本文来自于微信公众号 智能相对论(ID:aixdlun),作者:李永华,授权站长之家转载发布。

一边,是AI之父图灵将登上 50 英镑纸币;另一边,是不久前Google“技惊四座、震动全球”的打电话AI Duplex被纽约时报扒出人工“伪装”,成功的预订操作主要依靠人工冒充完成。

AI总是让人又喜又惊,有时候还有些“意外”。

一向被认为“商业”属性很浓、在AI上不太出彩的阿里,最近 1 个月似乎在集中“爆发”,一方面连续获得 5 个世界大赛冠军,包括在被称为人工智能世界杯的WebVision上,击败全世界 150 多支参赛队伍;

另一方面又在具体技术上实现突破,例如 6 月底,其宣布攻克了心血管识别技术,0. 5 秒识别单根血管, 20 秒识别完整冠脉树,“速度比起传统手段提升了近百倍”。

自从两年前成立达摩院,阿里AI一直少有声量,远不如其他互联网巨头甚至中小创业者那么博眼球,集中的技术势能表达不得不说让人意外。

事实上,粗略统计,阿里在AI前沿技术研究上已经累计获得了 40 多项世界第一。

为什么阿里的AI会先“影遁”再走向台前、“一次性”走到领先位置?这与AI发展的“基因”密切相关。

“商业太成功掩盖技术的光芒”与“AI基因论”

两年前,阿里巴巴CTO、花名“行癫”的张建锋曾说,“阿里的商业做得太成功,掩盖了技术的光芒”。

现在,阿里“突然”树立起人工智能技术上的引领者形象,回看这句话有了三层含义:

商业太成功导致大众对阿里AI技术的一面并不足够关注,如同聚光灯背后的黑色区域;

阿里的AI技术本来是“有光芒”的,现在看来“光芒”还不小;

阿里当年并不在乎技术的光芒是否能显现出来,所以即便被掩盖了,也不表现出很着急的样子,而到了现在,这个光芒大到了能“克服”商业聚光灯而被大众看到的程度。

从这些含义也可以看出,阿里AI定位和发展过程如此特殊,都呈现某种“弱功利性”的特征。

“基因论”在分析同一个业务竞争时往往很有价值。以功利取向作为标尺,商业公司发展AI在基因上大体分为三类:强功利性、弱功利性、一般功利性:

1、押宝型:强功利性,AI是企业的全部或者转型升级的依托

2011 年,巴菲特 120 多亿美元投资了IBM,到了 2016 年底,巴菲特持有的股份大幅下降到8.6%,当时的IBM营收已经连续第 20 个季度下跌,创下 15 年来营收新低。

在这种情况下, 2015 年,IBM成立独立的 Watson Health 部门,收购多家医疗数据公司盯住AI医疗。显然,对IBM而言,AI是强功利性的,承载了蓝色巨人走出困境的希望。

同样的基因也出现在Google的AI身上。PC 和移动端基于搜索构建的信息分发垄断地位受到信息流、短视频和社交网络等新媒体形态的严重挑战, 2018 年三季度、 2019 年一季度Google的营收皆不达预期,引发股价剧烈震荡,亚马逊广告业务的快速增长已经在威胁Google的老本行。

与此同时,Google的移动新业务、硬件业务也纷纷折戟沉沙。

这个过程中Google在不断加码AI,Waymo、Duplex等明星应用产品横空出世,押宝AI意图明显。

在“强功利性”下,AI必须能在十分有限的时间里创造支撑企业发展的商业价值。

2、战略型:弱功利性,AI不承担企业太多商业期许,只是企业应对未来的一种储备

与押宝型完全相反,AI不需要很早就与商业价值捆绑,至少企业不指望AI活着。

这些企业之所以要发展AI,都是为了大时代做储备,阿里AI就是如此。

2018 财年,阿里巴巴集团收入达3768. 44 亿元,年度自由现金流总计达到 158 亿美元,淘宝天猫新增超 1 亿用户;阿里云已经跻身全球云计算巨头行列,而独立的蚂蚁金服估值更是达到 1500 亿美元。

阿里真的不需要AI那点东西创造的商业价值来撑场面,它需要做的只是把AI做好,为未来可能的变局做准备,而这种定调,即“弱功利性”。

从“达摩院”的定位也能看出,“一家致力于探索科技未知,以人类愿景为驱动力的研究院”,研究中心、联合实验室、AIR计划加上大量“学术咨询委员会成员”,与其他AI平台的后脑相比,虽然达摩院仍然以场景应用为导向,但在强调技术与应用的双向结合基础之上,却有着浓浓的去功利化之感。

如果类比的话,同样是电商+云的亚马逊,虽然其AI与阿里一样迅猛发展,但在根本上也呈现“弱功利性”,全球第一的市值并不靠AI,也不在短期内指望AI带来多大价值。

3、补充型:一般功利性,AI是企业发展战略的必要补充

AI对企业不可或缺,但也不至于影响到企业生死存亡,最典型当属腾讯。

在产业互联网大旗下,出于合作伙伴的智能需求,腾讯不能缺失AI环节但AI并不起决定作用,它只是腾讯的一项赋能资源。

马化腾多次在公开场合表示腾讯要大力发展AI,但总体而言腾讯AI布局的动作仍然比较迟缓。腾讯AI Lab、优图实验室、WeChat AI实验室,统一的AI后脑也尚未形成。

“腾讯觅影”这样的优质AI项目显示腾讯正积极投入AI建设,但并不狂热。

与腾讯类似的是微软,自印度人萨提亚成为CEO后,微软凭借Azure的出色表现挽回颓势重回巅峰,再次成为全球第三大企业。

云计算无疑是微软的关键重头戏,但AI也是与云无缝搭档、不可或缺的要素。

技术的弱功利性带来“自由”,AI更能够“蓄能”

盘点了AI发展的“基因”,更能够理解“弱功利性”下阿里AI令人意外的突然冒出。

“弱功利性”下阿里AI赢得了更宽松的发展环境,少有商业化压力的AI技术积累更能够形成专注技术本身的“蓄能”过程。

而同时,阿里并不急着让达摩院为阿里做出多大的商业价值贡献(尽管长期肯定需要),就算技术不断进步,也并不急着通过各种信息渠道发声,最终结果就是公众认知里的阿里AI突然爆发。

这种爆发,有三个“蓄能”式的原因:

1、场景应用是“目的”更是“结果”

在AlphaGo出世前,Watson一直是人工智能的代名词。然而,当IBM面临转型压力时,Watson被抽调了医疗一个领域进行集中发展。

可惜的是,太过于强调商业价值,Watson Health在成立后匆忙陷入商业应用。

一方面,Watson Health在技术完备度上不具备多个数据体之间建立连接的能力,例如肿瘤学的模型不理解心脏病,无法在临床环境很好地应用;另一方面,由于模型不够完善,Watson Health只能被喂食“整理好的”数据,应用过程必须有大量人力投入。

最终,Watson Health在 2018 年宣布裁掉50%-70%的员工,宣告失败。

场景应用一定要是AI技术的“目的”,否则AI就失去了现实价值。但是,实现这个目的显然不能在技术尚未完全成熟时强行上线。从大量“教训”来看,让技术自然发展、最终自然连接应用,“场景应用”成为“结果”更符合AI落地的需求。

至少,我们不会再看到Google捧了自己的Duplex一整年,投入商用最后被扒皮这样的事了。

毫无疑问,在“弱功利性”下,场景应用成为“结果”更具备可行性。

以阿里AI为例,虽然它仍然以“目的”(场景应用)为导向,但是,达摩院的科研似乎更看重技术与应用的双向结合,而不是从场景到技术的单向过程。

虽然都有实践反哺AI的必要过程,但阿里的AI技术不被应用需求所倒逼,可以从容等到技术足够成熟才进行广泛应用,它的逻辑和那些盯着商业化的“肥肉”再想着怎么把技术贴上去的企业并不一样。

与星巴克的合作中,阿里小蜜接管星巴克客服体系,为消费者提供自助开卡、自助激活、自助开发票、自助客服等 24 小时秒级服务;

在与山东淄博市的合作中,阿里的"AI卫星遥感影像分析"技术,在淄博市 5965 平方公里土地上进行违章建筑和破坏森林等行为的识别,将传统的几个月的分析时间缩短至几分钟;

阿里的"助理法官"技术已在杭州互联网上岗,可" 1 秒内断案",未来有望实现"无人法庭”。

这些现实应用,无不是在技术先期充分发展之后,以“结果”的方式实现了“目的”。

例如,在"助理法官"应用前,阿里AI已经在顶级学术会议SIGIR官网发布相关研究成果,可以猜想的是,这一成果落地前,技术与应用已经不断进行双向磨合。

毕竟,弱功利性下,阿里AI有这个时间和条件,而强功利性下的玩家则不一定。

声明:本文转载自第三方媒体,如需转载,请联系版权方授权转载。协助申请

相关文章

相关热点

查看更多