首页 > 业界 > 关键词  > 国产AI大模型最新资讯  > 正文

突遭下架,“国服”开源模型将何去何从?

2024-09-18 08:49 · 稿源: 科技新知公众号

声明:本文来自微信公众号“科技新知”(ID:kejixinzhi),作者:余寐,编辑:蕨影,授权站长之家转载发布。

2024年下半年,国产AI大模型并不好过。

近期,AI代码类应用cursor发布,因其强大的编程功能,一时风头无两;紧接着openAI又于9月12日发布了最新模型chatGPT o1,在逻辑推理和编程能力上又提升到一个全新级别,可以说拥有了真正的通用推理能力,国际AI领域的竞争日益激烈。

同样在9月,号称“国服最强”的开源大模型通义千问QwenLM全系列代码在github(全球最大的开源代码托管平台之一)被下架,包括开源新王Qwen2.0在内的项目在访问时全部404。不仅引发了从业者对开源模型稳定性的信任危机,也暴露出国产大模型在商业化道路上的困境。

Part.1

下架风波,回应敷衍

“团队没有跑路,就是github org被无端端flag,所以你们看不到内容,我们已经在联系官方目前也不知道原因。”

阿里高级算法专家,通义千问团队负责人林俊旸在事件发生后迅速在社交平台辟谣。

但这样的回应并没有让AI相关从业者们满意。在此之前,他们中的一些人刚经历过Runway从HuggingFace上删库跑路的风波。Runway以Stable Diffusion系列闻名,一夜之间把自家开源模型清空,让无数正在使用该模型的开发者陷入停摆。

虽然目前github上QwenLM模型代码已经恢复,但对于事件的原因,通义千问团队并没有再做出任何回应。对于开源模型的项目,是否会再次受制于类似事故,从业者们更加茫然和悲观。

开源是阿里通义大模型的重要战略。

阿里云CTO周靖人曾在公开论坛表示:“开发者的反馈和开源社区的生态支持,是通义大模型技术进步的重要助力。”

大模型的训练和迭代成本极高,绝大多数的AI开发者和中小型企业无法负担。从这角度上来看,通义大模型的「全模态、全尺寸」开源战略,长期沉淀的良好口碑为其赢得了一众铁粉。

每有开源动作都会被热切的开发者们早早蹲守。截止2023年10月,阿里云旗下开源社区“魔塔”已有超过2300个模型,开发者超过280万,模型下载数破亿。阿里最新推出的开源模型QWen2系列更是风靡全球,其中Qwen2-72B更是在发布后短短两个小时,就冲上了Huggingface开源大模型排行榜之首,随后又卫冕全球最权威的开源模型测试榜单之首。而阿里最新季度业绩披露,通义千问开源模型下载量已突破2000万。

通义大模型的开源之举,打破了海外闭源大模型对国内开发者们的制约。就像阿里云CTO周靖人所说,“阿里云的初衷不是把模型攥在自己手上去商业化,而是帮助开发者,开源的策略与阿里云的初心完全一致。”在他看来,要在AI创新技术与模型层出不穷的当下,开源是“最佳也是唯一的途径”。

Part.2

开源VS闭源,谁是赢家?

在大模型时代开启之时,开源和闭源就一直争论不休。

百度创始人李彦宏就曾在今年4月举行的百度AI开发者大会上宣称“开源模型会越来越落后。”随后,李彦宏在内部讲话中也对开源模型的局限性表达了明确的看法——虽然开源模型获取和使用便利,但商业化应用中却往往遭遇GPU使用率低、推理成本高等问题。而互联网圈另外一位大佬周鸿祎则表示:“我一直相信开源的力量。”

抛开行业大佬之间的口水战,开源和闭源,两种截然不同的开发方式在当今的大模型发展中各有千秋。

从阵营上看,开源模型如meta的Llama系列、斯坦福的Alpaca、国内的阿里通义大模型等展现了社区驱动的快速进步和创新。而以OpenAI的GPT系列、Anthropic 的Claude大模型、百度的文心大模型、华为的盘古大模型等都选择了闭源的形式,保持着技术领先和商业应用的优势。

开源模式促进了大模型技术的共享与创新,而闭源模式则保障了商业利益和技术优势,为大模型的商业化提供了支持。

有从业者声音认为,从模型侧来讲,开源模型当前还是稍逊于闭源模型。但随着更多开源模型的迭代,开源的能力也在快速跟上。比如通义大模型Qwen2.5模型性能已经全面赶超GPT-4Turbo。

“从模型质量上来看,开源模型由于其代码的公开性,更容易在社区得到测试和改进;但闭源模型在研发时,模型的数据语料质量、丰富程度以及算力规模,团队的算法能力和背后强大的资金支持等因素,保证了闭源模型的高质量输出。”

上述从业者也提到,数据安全对于大模型来说非常重要,训练时会牵涉到用户的隐私数据,抓取也可能存在攻击性数据。开源模型因为要开放给更多用户,在安全和隐私方面会更加重视,安全专家可以进行代码审查,及时发现并修复潜在的安全风险;而闭源模型因为其代码不公开,有专业的安全团队进行安全防护和漏洞修复,可以减少由于外部攻击导致的安全隐患。在业内人士看来,开源和闭源并非二元对立的关系。

Part.3

通义千问,路在何方?

比起开源和闭源之争,如何实现商业化才是各家大模型当前急需解决的难题。

纵观阿里通义大模型的体系,可以分为大模型底座和应用端产品模型两个层面。2022年9月,达摩院发布“通义”大模型系列,打造业界首个AI底座。经过一年多的技术爆发,通义大模型已经从初代升级至2.5版本。为了满足不同计算资源需求和应用场景,通义团队还推出了参数规模从5亿到1100亿的八款大语言模型,以及包含了多个面向不同应用场景的模型,如Qwen-VL(视觉理解大模型)、Qwen-Audio(音频理解大模型)等。

除了底层大模型的研发,通义团队在应用端产品也卯足了劲。在去年10月的阿里云云栖大会上,CTO周靖人一口气发布了八款产品模型:包括通义灵码(智能编码助手)、通义智文(AI阅读助手)、通义听悟(AI工作学习助手)、通义星尘(个性化角色创作平台)、通义点金(智能投研助手)、通义晓蜜(智能客服助手)、通义仁心(个人健康助手)、通义法睿(AI法律顾问)。同时,通义千问正式上线了APP,所有用户都可通过“通义APP”直接体验最新模型能力;开发者可以通过网页嵌入、API/SDK调用等方式,将上述所有模型集成到自己的AI应用和服务中。

基于通义大模型的开源属性,商业化更是一个复杂的挑战。

「科技新知」梳理下来,目前大模型的商业化模式大致可分为四类。从C端市场来看:一是直接提供API接口,用户通过按量使用来收费;二是大模型赋能产品带来的需求与价格增长,如chatGPT、Midjourney等产品的付费使用。从B端市场来看,一是AI功能带来的流量增长,进而收取广告费用;二是通过AI对企业内部赋能,帮助企业降本增效,如文心大模型接入百度系产品,帮助产品提效。

目前看来,阿里似乎是在ToB和ToC的商业化道路上同时摸索前行。2023年4月,阿里巴巴宣布所有产品未来将接入“通义千问”大模型,进行全面改造。而在企业赋能上,阿里云把从飞天云操作系统、芯片到智算平台的“AI+云计算”这些AI基础设施和通义大模型能力向所有企业开放,未来每一个企业既可以调用通义千问的全部能力,也可以结合企业自己的行业知识和应用场景,训练自己的企业大模型。同时,通义灵码、通义智文、通义听悟等在内的八款产品模型,也受到了不少C端用户的肯定。

变现之路尚未明朗,AI大模型的价格战却已经打响。今年5月以来,字节、阿里、百度、智谱AI等多家国内大模型厂商均调整了旗下大模型产品的定价策略,通义千问主力模型Qwen-long,API输入价格从0.02元/千tokens降至0.0005元/千tokens,直降97%。

这也深层次反应了大模型厂商在技术、市场和战略等多方面的竞争到来。从商业化的角度来说,纯粹的价格战能在短期吸引用户,形成头部的虹吸效应,但长期选择上,没有技术创新作为支撑,难以形成持久的竞争优势。

大模型落地应用想象空间巨大,但落地难度同样不小。例如,将大模型直接应用于具体场景,比如医疗健康或法律咨询领域时,实际操作的挑战便显现出来。

在降本增效的大背景下,B端客户在选择大模型时也会更加注重成本和收益。如何通过细分市场企业精准定位市场需求,提供针对性解决方案,也是通义大模型在商业化布局中需要深思的。

而在C端市场,对于大多数消费者来说,AI技术的实用性尚未达到不可或缺的地步,各家应用的功能目前也并非不可替代。

这是通义大模型商业化的困境,也是多数AI大模型企业的难题。

举报

  • 相关推荐
  • 大家在看
  • Graphite Reviewer:AI代码审查伴侣

    Graphite Reviewer是一个AI代码审查工具,它通过即时反馈帮助团队提高代码审查的效率和质量。该工具利用代码库感知AI,自动检测代码中的bug和错误,使团队能够专注于构建而不是审查。它支持自定义规则,保证代码质量和一致性,同时确保代码的私密性和安全性。Graphite Reviewer的主要优点包括快速合并PR、强化质量和一致性、保持代码私密和安全、捕捉常见错误等。

  • Character SDK:构建可实时互动的AI角色

    Character SDK是一个能够创建AI角色的平台,这些角色可以实时听、说、看,甚至采取行动。它通过实时语音和视觉识别、高级OCR处理、多语言交流、自适应推理和基于意图的任务自动化等技术,帮助企业提高效率,减少成本,并提供个性化的用户体验。

  • Temperstack:一站式SRE平台,提升服务可靠性。

    Temperstack是一个企业级的主动式SRE平台,旨在减少SRE的重复劳动,提高服务的可靠性。它通过自动化服务目录、警报审计和跨您的监控工具的SLI报告,为从CTO到SRE工程师的团队提供可见性、主动发现问题并促进协作。Temperstack集成了流行的监控工具,提供统一的命令界面,以实现全面的SRE可见性和行动。

  • o1-engineer:命令行工具,提升开发效率

    o1-engineer 是一个命令行工具,旨在帮助开发者通过 OpenAI 的 API 高效地管理和交互项目。它提供了代码生成、文件编辑、项目规划等功能,以简化开发工作流程。

  • Canvas:与ChatGPT协作的新方式

    Canvas是OpenAI推出的一个新界面,旨在通过与ChatGPT的协作来改进写作和编码项目。它允许用户在一个单独的窗口中与ChatGPT一起工作,超越了简单的聊天界面。Canvas利用GPT-4o模型,能够更好地理解用户的上下文,并提供内联反馈和建议。它支持直接编辑文本或代码,并提供快捷操作菜单,帮助用户调整写作长度、调试代码等。Canvas还支持版本回溯,帮助用户管理项目的不同版本。

  • Text Behind Image:轻松创建文字背景图片设计。

    Text Behind Image 是一个开源的设计工具,允许用户轻松创建文字背景图片设计。它提供了一个简洁的界面,让用户可以自由地在图片上添加文字,创造出独特的视觉效果。这个工具对于设计师、社交媒体运营者和内容创作者来说非常有用,因为它可以快速生成具有吸引力的视觉内容。

  • torchao:PyTorch原生量化和稀疏性训练与推理库

    torchao是PyTorch的一个库,专注于自定义数据类型和优化,支持量化和稀疏化权重、梯度、优化器和激活函数,用于推理和训练。它与torch.compile()和FSDP2兼容,能够为大多数PyTorch模型提供加速。torchao旨在通过量化感知训练(QAT)和后训练量化(PTQ)等技术,提高模型的推理速度和内存效率,同时尽量减小精度损失。

  • LFMs:新一代生成式AI模型

    Liquid Foundation Models (LFMs) 是一系列新型的生成式AI模型,它们在各种规模上都达到了最先进的性能,同时保持了更小的内存占用和更高效的推理效率。LFMs 利用动态系统理论、信号处理和数值线性代数的计算单元,可以处理包括视频、音频、文本、时间序列和信号在内的任何类型的序列数据。这些模型是通用的AI模型,旨在处理大规模的序列多模态数据,实现高级推理,并做出可靠的决策。

  • NVLM-D-72B:前沿的多模态大型语言模型

    NVLM-D-72B是NVIDIA推出的一款多模态大型语言模型,专注于视觉-语言任务,并且通过多模态训练提升了文本性能。该模型在视觉-语言基准测试中取得了与业界领先模型相媲美的成绩。

  • gradio-bot:将Hugging Face Space或Gradio应用转化为Discord机器人

    gradio-bot是一个可以将Hugging Face Space或Gradio应用转化为Discord机器人的工具。它允许开发者通过简单的命令行操作,将现有的机器学习模型或应用快速部署到Discord平台上,实现自动化交互。这不仅提高了应用的可达性,还为开发者提供了一个与用户直接交互的新渠道。

  • AI-Powered Meeting Summarizer:会议语音转文本并自动生成摘要的AI工具

    AI-Powered Meeting Summarizer是一个基于Gradio的网站应用,能够将会议录音转换为文本,并使用whisper.cpp进行音频到文本的转换,以及Ollama服务器进行文本摘要。该工具非常适合快速提取会议中的关键点、决策和行动项目。

  • VARAG:视觉增强的检索与生成系统

    VARAG是一个支持多种检索技术的系统,优化了文本、图像和多模态文档检索的不同用例。它通过将文档页面作为图像嵌入,简化了传统的检索流程,并使用先进的视觉语言模型进行编码,提高了检索的准确性和效率。VARAG的主要优点在于它能够处理复杂的视觉和文本内容,为文档检索提供强大的支持。

  • JoyHallo:数字人模型,支持生成普通话视频

    JoyHallo是一个数字人模型,专为普通话视频生成而设计。它通过收集来自京东健康国际有限公司员工的29小时普通话视频,创建了jdh-Hallo数据集。该数据集覆盖了不同年龄和说话风格,包括对话和专业医疗话题。JoyHallo模型采用中国wav2vec2模型进行音频特征嵌入,并提出了一种半解耦结构来捕捉唇部、表情和姿态特征之间的相互关系,提高了信息利用效率,并加快了推理速度14.3%。此外,JoyHallo在生成英语视频方面也表现出色,展现了卓越的跨语言生成能力。

  • PhysGen:基于物理的图像到视频生成技术

    PhysGen是一个创新的图像到视频生成方法,它能够将单张图片和输入条件(例如,对图片中物体施加的力和扭矩)转换成现实、物理上合理且时间上连贯的视频。该技术通过将基于模型的物理模拟与数据驱动的视频生成过程相结合,实现了在图像空间中的动态模拟。PhysGen的主要优点包括生成的视频在物理和外观上都显得逼真,并且可以精确控制,通过定量比较和全面的用户研究,展示了其在现有数据驱动的图像到视频生成工作中的优越性。

  • Whisper large-v3-turbo:高效自动语音识别模型

    Whisper large-v3-turbo是OpenAI提出的一种先进的自动语音识别(ASR)和语音翻译模型。它在超过500万小时的标记数据上进行训练,能够在零样本设置中泛化到许多数据集和领域。该模型是Whisper large-v3的微调版本,解码层从32减少到4,以提高速度,但可能会略微降低质量。

  • Realtime API:低延迟的实时语音交互API

    Realtime API 是 OpenAI 推出的一款低延迟语音交互API,它允许开发者在应用程序中构建快速的语音到语音体验。该API支持自然语音到语音对话,并可处理中断,类似于ChatGPT的高级语音模式。它通过WebSocket连接,支持功能调用,使得语音助手能够响应用户请求,触发动作或引入新上下文。该API的推出,意味着开发者不再需要组合多个模型来构建语音体验,而是可以通过单一API调用实现自然对话体验。

  • Saylo AI:探索无限的AI角色扮演游戏。

    Saylo AI是一个AI角色扮演游戏,让你与AI角色互动,探索多样化的戏剧性故事。它利用人工智能技术,提供沉浸式的互动体验,让玩家在虚拟世界中与AI朋友交流,体验不同的故事情节。Saylo AI的背景信息展示了其创新性和娱乐性,旨在为玩家提供一种全新的娱乐方式。目前产品处于推广阶段,价格未明确标注。

  • twinny:Visual Studio Code的免费且私密的AI扩展

    twinny是一个为Visual Studio Code用户设计的AI扩展,旨在提供个性化的编程辅助,提高开发效率。它通过集成先进的AI技术,帮助开发者在编码过程中快速解决问题,优化代码,并提供智能提示。twinny的背景是响应开发者对于更加智能和自动化编程工具的需求,它通过简化开发流程,减少重复劳动,从而让开发者能够专注于更有创造性的工作。

  • Buildpad:构建人们真正想要的产品

    Buildpad 是一个旨在帮助创始人从概念到成功最小可行产品(MVP)的在线平台。它通过提供智能验证工具、AI引导的开发流程、进度跟踪以及个性化的项目见解,帮助用户构建能够获得市场认可的产品。Buildpad 的主要优点包括简化产品开发流程、提高产品成功率、以及提供个性化的指导和支持。

  • Novela:AI时代的技能学习平台

    Novela是一个专注于AI时代技能学习的在线平台,提供早期访问服务,用户可以免费试用。它旨在帮助用户掌握AI相关的技能,以适应未来职场的需求。

今日大家都在搜的词: