“马云爸爸”成立快一年的达摩院,究竟在做什么?

2018-07-11 14:37 稿源:PingWest品玩  0条评论

去年 10 月份,“马云爸爸”做了一件非常惊人的事——成立阿里巴巴达摩院。

阿里之下的达摩院,来源于武侠小说,作为武学最高研究机构,达摩院代表了修为的最高境界。同样,科研也代表了精进、执着和专注的精神。

达摩院成立的前一天,有一张图火了——就是一张马云和多位科学家的合影在科技圈儿刷了屏。包括马云C位在内,一共有 14 名成员,普通人可能不太熟悉其中大部分的人,但他们大多数是技术领域的顶级大牛,他们将为阿里的“达摩院”出谋划策,出于一些业务上的考量,他们更像是顾问。


damoyuan.jpg


作为一个“活得至少要比阿里巴巴长”的技术机构,马云宣布三年内,要在技术研发上投入超过 1000 亿,初期招揽 100 名顶级科学家和研究人员,研究自然语言处理、人机自然交互、量子计算、机器学习、基础算法、芯片技术、传感器技术、嵌入式系统等等前沿科学领域。总之,你能想到的那些前沿技术领域,全部包括在达摩院的范畴之内。

马云对达摩院发展提出的三个要求,“活得要比阿里巴巴长”、“服务全世界至少 20 亿人口”、“必须面向未来、用科技解决未来的问题”。

过去一年,达摩院并没有出来公开讲过太多话。今年 4 月,阿里达摩院宣布了自主研发AI芯片——Ali-NPU,按照阿里说法,该芯片的性能将是目前同类产品的 40 倍。今年 5 月,达摩院量子实验室宣布,研制出世界最强的量子电路模拟器“太章”,并在全球率先成功模拟了 81 比特 40 层的作为基准的谷歌随机量子电路,挑战“量子霸权”。除此之外,基本都是在算法和测评比赛上获得一些奖项。

成立 9 个月以来,阿里的技术核心达摩院仍然非常神秘,这个机构有多少业务部门单元,有多少人,他们在做什么事儿,如何运用到阿里巴巴的体系当中去?

7 月 6 日,阿里巴巴在杭州举办了一次“媒体小课堂”——这也是既达摩院成立了快一年后,第一次做媒体沟通。这不同于一些传统的发布会和沟通会,这更类似于一个媒体公开课的形式,主要由几名具体技术业务部门的发言人阐述一些技术背景、应用场景以及达摩院对于未来技术的判断。

阿里巴巴方面并没有直接透露达摩院体系之下的人员数量,但多数成员来自于此前的iDST。在媒体小课堂上, 四位主讲人分别是来自达摩院机器智能实验室(视觉组)负责图像识别的资深算法专家谢宣松、量子实验室的量子科学家徐华、机器智能技术实验室负责机器翻译的研究员葛妮瑜以及机器智能技术实验室负责语音识别的高级算法专家雷鸣。旗下有几个实验室我们并不得知,而据阿里巴巴提供的最新的消息,阿里巴巴体系下已经有拥有 25000 名技术研发工程师。

据阿里介绍,在阿里巴巴,达摩院并不是一个纯研究部门,它和业务和商业紧密相连,既有学术思维,也有产品思维和商业逻辑。达摩院机器智能实验室高级算法专家雷鸣在加入达摩院之前在微软任职语音科学家,他认为“在微软更像是纯学术研究,而在阿里巴巴会让自己有一些商业的考量。”

达摩院机器智能技术实验室智能语音交互的首席科学家鄢志杰曾经也提到——他在阿里的实验室有三类人。一是算法研究,二是做算法落地,三是推动产品化的工程技术人员。这三类人结合到一个组织下,能让算法的研究成果迅速被产品化。

千货千面,机器自动生成促销图

今天的人工智能代表有很多——打败世界冠军的AlphaGo,基于用户兴趣的商品推荐,支付宝的刷脸支付、交通网络上的车牌识别,菜鸟网络的智能调度等等。有很多是基于视觉智能的。

达摩院的视觉智能是围绕几个方面的——围绕“人”,比如基于人的医疗视觉;围绕“物”,识别工业上的一些设计的技术问题、流水线上的包裹,甚至高铁都可以称作“物”;还有围绕“空间”,像城市大脑,是研究城市空间怎么运作的,包括技术在交通、安全上的识别。

而最新的技术是在“设计”领域,比如视觉生成。

视觉生成可以这样理解——以往很多视觉的AI技术,都是集中在人脸识别、支付,或者对于视觉中内容的理解等等,基本上可以认为是识别、检测、分割的技术内容更多,而生成、决策的内容更少。

而类比人的智能生成的过程——从小学初中大学硕士博士,逐渐认识和理解这个世界,而最后工作提出研究、产生的价值则是个人决策的概念。对于视觉智能来说,同样基础在于理解,目的在于生成。

目前分成三块内容。一个是对图像的生成;一个是对视频的编辑和生成;还有对图形的生成。

对于阿里来说,最典型的应用是淘宝正在使用鲁班系统。谢宣松提到,“我们在‘双11’,或者在手淘、天猫,上面有大量banner图片。其中很大部分是由系统自动生成。比如说光‘双11’会产生数亿张图,累计起来更多。目前通过鲁班服务各种电商场景,后面通过阿里云服务各种需求。”


22.png


淘宝中很多图片是机器自动生成的,并非是认为PS的。而在智能生成的领域,还支持广告短视频自动生成。

除去在“设计”领域的运用之外,阿里巴巴还推出了城市大脑,针对城市交通路网的识别,还有行业大脑对于特定领域的垂直应用。针对“物”,主要应用在流水线物体的检测领域,“ 比如铁路有螺母松动,或者某个电池片,太阳晶硅这种发生了裂纹,还有芯片溢胶不正常等等,这些诊断内容从视觉上能看得到,而不用人再去反复检查。”

针对“人”,更多的是应用在医疗领域,针对X光的膝关节检测甚至是肺结核检测,但挑战在于,医疗行业的数据大部分都是异构的,达摩院视觉智能的目的是建立数字化人体基准影像库。

极限计算和量子霸权

阿里巴巴一位内部人士提到,达摩院的研究分为短、中、长的研究时长,人工智能既有短期也有中期,也有长期的研究方向。量子计算就算是中长期的研究方向。

对于量子计算来说,达摩院的量子计算实验室曝光不多。前者视觉智能偏向于应用层面,视觉智能如何在阿里巴巴落地等等,而量子计算则只能从概念和状态说起……

量子最早来源于拉丁的Quantus,它的是一个概念,而非物质。本身并不是任何物质,而是表示在 1900 年德国一个物理学家普朗克黑体辐射,提出了量子概念。一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并且把最小单位称为量子,这是量子的基本概念。它是一个概念,而不是一个物质。

什么是量子计算?在知乎上引述@Summer Clover所提到的院士的答案…..比较通俗易懂。

量子比特可以制备两个逻辑态 0 和 1 的相干叠加态,换句话讲,它可以同时存储 0 和1。一个N个物理比特的存储器,若它是经典存储器,则它只能存储2^N个可能数据当中的某一个;若它是量子存储器,则它可同时存储2^N个数据。而且随着N的增加,其存储信息的能力将呈指数级上升。由于数据操作可以同时对存储器的数据进行,而量子计算在实施一次运算的过程中,则是同时对2^N个输入数进行测算,其效果就相当于经典计算机采用2^N个不同处理器进行并行操作。

量子计算机的方式,可以解决经典计算机发展瓶颈的问题。量子算法在算法上加速,可以做量子系统模拟,量子机器学习。“一般一个领域有一两个应用就可以干了,这三个都有很强的应用,这可以说是量子计算发展核心的驱动力,驱动大家在这个领域投入,去做这方面。”

量子计算在加速上有很大应用,量子计算机对于模拟原子、分子等遵循量子力学基本原理的系统,加速性能明显。“关于药物研发、材料性质研发,都需要这方面的模拟。经典计算机没有比较好的做,这是量子计算逻辑非常重要的应用。”


1212.png


量子霸权,则是对于某个特定的问题量子计算机可以解决,但是经典计算机无法解决。 2016 年Google团队在理论上提出, 49 个物理量子比特可以在随机量子电路的输出采样,这个特殊问题上实现量子霸权。 2017 年 10 月,IBM在超算上实现了 56 量子比特的模拟。

Google今年 3 月提出 72 个量子比特的芯片方案。阿里巴巴则公布了 81 个量子比特的模拟,宣布打破了Google宣称的量子霸权垄断。不过量子霸权,从提出霸权到打破,“更多是象征意义大于实际意义,因为本身解决不是通路计算问题,主要是特性问题解决,认为是技术发展过程当中一个个里程碑。”

量子计算在阿里巴巴内部有什么落地?

此前,阿里巴巴成立了量子计算实验室,主要是想通过颠覆性的量子计算能力,为客户提供基于量子计算的解决方案。据称,目前已经有“小有规模”的团队,是一个跨学科的国际化团队,希望是解决量子计算方面全栈问题。阿里巴巴目前没有透露进一步的详细信息。

阿里巴巴目前的介绍也比较偏向于底层,物理实现层。而在其上面还有一些系统软件层,有算法层,应用层,每个层上都有很多问题。

徐华提到,量子计算的普及还不太好预言,但有几个领域会比较受关注:

  • 一,量子体系的模拟。通过经典计算机进行量子系统模拟,结合量子计算机本身,一起对量子体系模拟。阿里巴巴目前已经有一些项目在测试了,现在不方便透露。


  • 二,阿里巴巴集团在人工智能优化领域有很多布局,业务层面有很多应用。量子计算对于人工智能有很强的加速作用,近期我们可能会开始一些项目的调研和启动。


徐华认为,“当前业界仍是这样的状态——量子计算非常困难,被定义为极限计算。利用的是各种极端条件下,极限的物理条件来实现。”

有好的文章希望站长之家帮助分享推广,猛戳这里我要投稿

相关文章

相关热点

查看更多